Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lohmann, Volker  (8)
Type of Medium
Language
Year
  • 1
    Language: English
    In: 2013, Vol.9(8), p.e1003561
    Description: Hepatitis C virus (HCV) infection develops into chronicity in 80% of all patients, characterized by persistent low-level replication. To understand how the virus establishes its tightly controlled intracellular RNA replication cycle, we developed the first detailed mathematical model of the initial dynamic phase of the intracellular HCV RNA replication. We therefore quantitatively measured viral RNA and protein translation upon synchronous delivery of viral genomes to host cells, and thoroughly validated the model using additional, independent experiments. Model analysis was used to predict the efficacy of different classes of inhibitors and identified sensitive substeps of replication that could be targeted by current and future therapeutics. A protective replication compartment proved to be essential for sustained RNA replication, balancing translation versus replication and thus effectively limiting RNA amplification. The model predicts that host factors involved in the formation of this compartment determine cellular permissiveness to HCV replication. In gene expression profiling, we identified several key processes potentially determining cellular HCV replication efficiency. ; Hepatitis C is a severe disease and a prime cause for liver transplantation. Up to 3% of the world's population are chronically infected with its causative agent, the Hepatitis C virus (HCV). This capacity to establish long (decades) lasting persistent infection sets HCV apart from other plus-strand RNA viruses typically causing acute, self-limiting infections. A prerequisite for its capacity to persist is HCV's complex and tightly regulated intracellular replication strategy. In this study, we therefore wanted to develop a comprehensive understanding of the molecular processes governing HCV RNA replication in order to pinpoint the most vulnerable substeps in the viral life cycle. For that purpose, we used a combination of biological experiments and mathematical modeling. Using the model to study HCV's replication strategy, we recognized diverse but crucial roles for the membraneous replication compartment of HCV in regulating RNA amplification. We further predict the existence of an essential limiting host factor (or function) required for establishing active RNA replication and thereby determining cellular permissiveness for HCV. Our model also proved valuable to understand and predict the effects of pharmacological inhibitors of HCV and might be a solid basis for the development of similar models for other plus-strand RNA viruses.
    Keywords: Research Article ; Biology ; Medicine
    ISSN: 1553-7366
    E-ISSN: 1553-7374
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of virology, 01 January 2018, Vol.92(1)
    Description: Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses.
    Keywords: Dmv ; Hcv ; Npc1 ; RNA Replication ; Cholesterol ; Lipid Transfer ; Homeostasis ; Virus Replication ; Cholesterol -- Metabolism ; Endosomes -- Physiology ; Hepacivirus -- Physiology
    ISSN: 0022538X
    E-ISSN: 1098-5514
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: The Journal of biological chemistry, 05 August 2011, Vol.286(31), pp.27278-87
    Description: RIG-I is a major innate immune sensor for viral infection, triggering an interferon (IFN)-mediated antiviral response upon cytosolic detection of viral RNA. Double-strandedness and 5'-terminal triphosphates were identified as motifs required to elicit optimal immunological signaling. However, very little is known about the response dynamics of the RIG-I pathway, which is crucial for the ability of the cell to react to diverse classes of viral RNA while maintaining self-tolerance. In the present study, we addressed the molecular mechanism of RIG-I signal detection and its translation into pathway activation. By employing highly quantitative methods, we could establish the length of the double-stranded RNA (dsRNA) to be the most critical determinant of response strength. Size exclusion chromatography and direct visualization in scanning force microscopy suggested that this was due to cooperative oligomerization of RIG-I along dsRNA. The initiation efficiency of this oligomerization process critically depended on the presence of high affinity motifs, like a 5'-triphosphate. It is noteworthy that for dsRNA longer than 200 bp, internal initiation could effectively compensate for a lack of terminal triphosphates. In summary, our data demonstrate a very flexible response behavior of the RIG-I pathway, in which sensing and integration of at least two distinct signals, initiation efficiency and double strand length, allow the host cell to mount an antiviral response that is tightly adjusted to the type of the detected signal, such as viral genomes, replication intermediates, or small by-products.
    Keywords: Immunity, Innate ; Dead-Box RNA Helicases -- Physiology
    E-ISSN: 1083-351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: 2015, Vol.11(1), p.e1004573
    Description: Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses. ; As obligate intracellular parasites with limited gene coding capacity viruses exploit host cell machineries for the sake of efficient replication and spread. Thus, identification of these cellular machineries and factors is necessary to understand how a given virus achieves efficient replication and eventually causes host cell damage. Hepatitis C virus (HCV) is an RNA virus replicating in the cytoplasm of hepatocytes. While viral proteins have been studied in great detail, our knowledge about how host cell factors are used by HCV for efficient replication and spread is still scarce. In the present study we conducted a comprehensive RNA-interference-based screen and identified 40 genes that promote the HCV lifecycle and 16 genes that suppress it. Follow-up studies revealed that one of these genes, the heterogeneous nuclear ribonucleoprotein K (HNRNPK), selectively suppresses production of infectious HCV particles. We mapped the domains of HNRNPK required for this suppression and demonstrate that this protein selectively binds to the HCV RNA genome. Based on the correlation between suppression of virus production, HCV RNA binding and recruitment to lipid droplets, we propose that HNRNPK might limit the amount of viral RNA genomes available for incorporation into virus particles. This study provides novel insights into the complexity of reactions that are involved in the formation of HCV virions.
    Keywords: Research Article ; Biology And Life Sciences ; Medicine And Health Sciences
    ISSN: 1553-7366
    E-ISSN: 1553-7374
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Hepatology, December 2012, Vol.56(6), pp.2082-2093
    Description: Persistent infection with hepatitis C virus (HCV) can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. All current therapies of hepatitis C include interferon‐alpha (IFN‐α). Moreover, IFN‐gamma (IFN‐γ), the only type II IFN, strongly inhibits HCV replication and is the primary mediator of HCV‐specific antiviral T‐cell responses. However, for both cytokines the precise set of effector protein(s) responsible for replication inhibition is not known. The aim of this study was the identification of IFN‐α and IFN‐γ stimulated genes (ISGs) responsible for controlling HCV replication. We devised an RNA interference (RNAi)‐based “gain of function” screen and identified, in addition to known ISGs earlier reported to suppress HCV replication, several new ones with proven antiviral activity. These include IFIT3 (IFN‐induced protein with tetratricopeptide repeats 3), TRIM14 (tripartite motif containing 14), PLSCR1 (phospholipid scramblase 1), and NOS2 (nitric oxide synthase 2, inducible). All ISGs identified in this study were up‐regulated both by IFN‐α and IFN‐γ, demonstrating a substantial overlap of HCV‐specific effectors induced by either cytokine. Nevertheless, some ISGs were more specific for IFN‐α or IFN‐γ, which was most pronounced in case of PLSCR1 and NOS2 that were identified as main effectors of IFN‐γ‐mediated anti‐HCV activity. Combinatorial knockdowns of ISGs suggest additive or synergistic effects demonstrating that with either IFN, inhibition of HCV replication is caused by the combined action of multiple ISGs. Conclusion: Our study identifies a number of novel ISGs contributing to the suppression of HCV replication by type I and type II IFN. We demonstrate a substantial overlap of antiviral programs triggered by either cytokine and show that suppression of HCV replication is mediated by the concerted action of multiple effectors. (H 2012;56:2082–2093)
    Keywords: Antigens, Differentiation–Genetics ; Antigens, Differentiation–Metabolism ; Carrier Proteins–Genetics ; Carrier Proteins–Metabolism ; Gene Expression Regulation–Physiology ; Hepacivirus–Drug Effects ; Hepatocytes–Metabolism ; Hepatocytes–Pharmacology ; Humans–Pharmacology ; Interferon-Alpha–Genetics ; Interferon-Gamma–Metabolism ; Intracellular Signaling Peptides & Proteins–Genetics ; Intracellular Signaling Peptides & Proteins–Metabolism ; Membrane Proteins–Genetics ; Membrane Proteins–Metabolism ; Nitric Oxide Synthase Type II–Genetics ; Nitric Oxide Synthase Type II–Metabolism ; Phospholipid Transfer Proteins–Metabolism ; Phospholipid Transfer Proteins–Genetics ; RNA Interference–Metabolism ; RNA, Messenger–Drug Effects ; RNA-Binding Proteins–Drug Effects ; RNA-Binding Proteins–Drug Effects ; Replicon–Drug Effects ; Tumor Cells, Cultured–Drug Effects ; Up-Regulation–Drug Effects ; Virus Replication–Drug Effects ; Liver Cirrhosis ; Hepatitis ; Cytokines ; Hepatology ; Antigens, Differentiation ; Carrier Proteins ; Ifit3 Protein, Human ; Ifitm3 Protein, Human ; Interferon-Alpha ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins ; Plscr1 Protein, Human ; Phospholipid Transfer Proteins ; RNA, Messenger ; RNA-Binding Proteins ; Trim14 Protein, Human ; Leu-13 Antigen ; Interferon-Gamma ; Nos2 Protein, Human ; Nitric Oxide Synthase Type II;
    ISSN: 0270-9139
    E-ISSN: 1527-3350
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Cell Host & Microbe, 19 July 2012, Vol.12(1), pp.71-85
    Description: Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2α phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2α. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence. ► Persistent HCV infection combined with IFN induces highly dynamic stress response ► Stress granule (SG) assembly/disassembly prevents prolonged translation repression ► Control of SG oscillations by opposing kinase PKR and protein phosphatase 1 actions ► SG oscillation is a conserved host cell response to multiple RNA virus infections
    Keywords: Biology
    ISSN: 1931-3128
    E-ISSN: 1934-6069
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Molecular Cell, 02 February 2017, Vol.65(3), pp.403-415.e8
    Description: Cell-autonomous induction of type I interferon must be stringently regulated. Rapid induction is key to control virus infection, whereas proper limitation of signaling is essential to prevent immunopathology and autoimmune disease. Using unbiased kinome-wide RNAi screening followed by thorough validation, we identified 22 factors that regulate RIG-I/IRF3 signaling activity. We describe a negative-feedback mechanism targeting RIG-I activity, which is mediated by death associated protein kinase 1 (DAPK1). RIG-I signaling triggers DAPK1 kinase activation, and active DAPK1 potently inhibits RIG-I stimulated IRF3 activity and interferon-beta production. DAPK1 phosphorylates RIG-I in vitro at previously reported as well as other sites that limit 5′ppp-dsRNA sensing and virtually abrogate RIG-I activation. Willemsen et al. screened the antiviral RIG-I pathway for regulators and identified and validated 22 kinases. They describe an inhibitory feedback loop mediated by DAPK1. Antiviral signaling activates DAPK1 kinase activity, which, in turn, inactivates RIG-I by direct phosphorylation.
    Keywords: Innate Immunity ; Antiviral Response ; Pattern Recognition Receptors ; Signal Transduction ; Feedback Regulation ; Interferon System ; Cytokines ; Dapk1 ; Rig-I ; Ddx58 ; Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Cell Host & Microbe, 2011, Vol.9(1), pp.32-45
    Description: Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication, we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα), as being required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV-infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex. ► 13 human kinases, including PI4KIIIα, are required for HCV replication ► HCV NS5A recruits PI4KIIIα to replication sites & stimulates its kinase activity ► PI4P levels are elevated in HCV-containing cells in vitro and in vivo ► Activity of PI4KIIIα is critical for the integrity of viral replication sites
    Keywords: Biology
    ISSN: 1931-3128
    E-ISSN: 1934-6069
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages