Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ngwene, Benard  (10)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Plant and Soil, 2013, Vol.372(1), pp.361-374
    Description: Issue Title: In Memory of Horst Marschner This study aimed to determine the effect of arbuscular mycorrhizal (AM) fungi and phosphorus (P) supply levels on [beta]-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers. Two commercial AM fungal isolates of Glomus intraradices (IFP Glintra) and Glomus mosseae (IFP Glm) which differ in their life cycles were used. Sweet potato plants were grown in a horizontal split-root system that consisted of two root compartments. A root-free fungal compartment that allowed the quantification of mycelial development was inserted into each root compartment. The two root compartments were inoculated either with the same or with different AM isolates, or remained free of mycorrhizal propagules. Each fungal treatment was carried out in two P supply levels. In the low P supply level, mycorrhizal colonization significantly increased [beta]-carotene concentrations in sweet potato tubers compared with the non-mycorrhizal plants. Glomus intraradices appeared to be more efficient in increasing [beta]-carotene concentrations than G. mosseae. Dual inoculation of the root system with the two mycorrhizal fungi did not result in a higher increase in tuber [beta]-carotene concentrations than inoculation with the single isolates. Improved P nutrition led to higher plant tuber biomass but was not associated with increased [beta]-carotene concentrations. The results indicate a remarkable potential of mycorrhizal fungi to improve [beta]-carotene concentrations in sweet potato tubers in low P fertilized soils. These results also suggest that [beta]-carotene metabolism in sweet potato tubers might be specifically activated by root mycorrhizal colonization.[PUBLICATION ]
    Keywords: β-carotene ; Glomus intraradices ; Glomus mosseae ; Phosphorus ; Sweet potato
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Food Chemistry, 01 June 2014, Vol.152, pp.190-196
    Description: The decrease of water availability is leading to an urgent demand to reduce the plants’ water supply. This study evaluates the effect of topsoil drying, combined with varying sulfur (S) supply on glucosinolates in in order to reveal whether a partial root drying may already lead to a drought-induced glucosinolate increase promoted by an enhanced S supply. Without decreasing biomass, topsoil drying initiated an increase in aliphatic glucosinolates in leaves and in topsoil dried roots supported by increased S supply. Simultaneously, abscisic acid was determined, particularly in dehydrated roots, associated with an increased abscisic acid concentration in leaves under topsoil drying. This indicates that the dehydrated roots were the direct interface for the plants’ stress response and that the drought-induced accumulation of aliphatic glucosinolates is related to abscisic acid formation. Indole and aromatic glucosinolates decreased, suggesting that these glucosinolates are less involved in the plants’ response to drought.
    Keywords: 2-Propenyl Glucosinolate ; Topsoil Drying ; Abscisic Acid ; N:S Ratio ; Vegetable Mustard ; Chemistry ; Diet & Clinical Nutrition ; Economics
    ISSN: 0308-8146
    E-ISSN: 1873-7072
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Mycorrhiza, 2013, Vol.23(2), pp.107-117
    Description: Labeled nitrogen ( 15  N) was applied to a soil-based substrate in order to study the uptake of N by Glomus intraradices extraradical mycelium (ERM) from different mineral N (NO 3 − vs. NH 4 + ) sources and the subsequent transfer to cowpea plants. Fungal compartments (FCs) were placed within the plant growth substrate to simulate soil patches containing root-inaccessible, but mycorrhiza-accessible, N. The fungus was able to take up both N-forms, NO 3 − and NH 4 + . However, the amount of N transferred from the FC to the plant was higher when NO 3 − was applied to the FC. In contrast, analysis of ERM harvested from the FC showed a higher 15  N enrichment when the FC was supplied with 15 NH 4 + compared with 15 NO 3 − . The 15  N shoot/root ratio of plants supplied with 15 NO 3 − was much higher than that of plants supplied with 15 NH 4 + , indicative of a faster transfer of 15 NO 3 − from the root to the shoot and a higher accumulation of 15 NH 4 + in the root and/or intraradical mycelium. It is concluded that hyphae of the arbuscular mycorrhizal fungus may absorb NH 4 + preferentially over NO 3 − but that export of N from the hyphae to the root and shoot may be greater following NO 3 − uptake. The need for NH 4 + to be assimilated into organically bound N prior to transport into the plant is discussed.
    Keywords: Arbuscular mycorrhiza ; Cowpea ; Nitrate/ammonium transfer ; Fungal compartment
    ISSN: 0940-6360
    E-ISSN: 1432-1890
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Mycorrhiza, April 2017, Vol.27(3), pp.201-210
    Description: The formation of storage organs, such as spores and vesicles, is a central part of the life cycle of an arbuscular mycorrhizal fungus (AMF), but the conditions under which this occurs in AMF are not well understood. Here, quantity and distribution of storage organs formed by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae within dead (excised) roots were characterised. 'Trap roots' (TR), separated from the growth substrate by a 30-μm mesh, supported hyphal growth and formation of storage organs of the AMF. Hyphae developed both inside and on the outside of the TR and also within air gaps of surrounding nylon mesh compartments, but formation of vesicles and spores was confined to the interior and to the surface of the TR. Up to 20 % of the TR length harboured newly formed storage organs, resulting in a number of about 60 per mg TR dry weight. The portion of TR length containing storage organs was greater in coarse (diameter 〉300 μm) than in thin (〈150 μm) TR, irrespective of whether the TR were sourced from an AMF host or non-host plant. We conclude that the AMF's extraradical mycelium produces its storage organs within dead roots in preference to air space in the substrate. Dead roots may indirectly supply nutrients to AMF (once they have been mineralised) or represent a protected space for the fungal structures to develop. The experimental technique described here allows for the preparation of AMF spores and vesicles of F. mosseae free of any mineral substrate.
    Keywords: Extraradical Mycelium ; Root Colonisation ; Root Turnover ; Spore Production ; Vesicles ; Mycorrhizae -- Metabolism ; Spores, Fungal -- Metabolism ; Zea Mays -- Microbiology
    ISSN: 09406360
    E-ISSN: 1432-1890
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Mycorrhiza, 2017, Vol.27(3), pp.201-210
    Description: The formation of storage organs, such as spores and vesicles, is a central part of the life cycle of an arbuscular mycorrhizal fungus (AMF), but the conditions under which this occurs in AMF are not well understood. Here, quantity and distribution of storage organs formed by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae within dead (excised) roots were characterised. ‘Trap roots’ (TR), separated from the growth substrate by a 30-μm mesh, supported hyphal growth and formation of storage organs of the AMF. Hyphae developed both inside and on the outside of the TR and also within air gaps of surrounding nylon mesh compartments, but formation of vesicles and spores was confined to the interior and to the surface of the TR. Up to 20 % of the TR length harboured newly formed storage organs, resulting in a number of about 60 per mg TR dry weight. The portion of TR length containing storage organs was greater in coarse (diameter 〉300 μm) than in thin (〈150 μm) TR, irrespective of whether the TR were sourced from an AMF host or non-host plant. We conclude that the AMF’s extraradical mycelium produces its storage organs within dead roots in preference to air space in the substrate. Dead roots may indirectly supply nutrients to AMF (once they have been mineralised) or represent a protected space for the fungal structures to develop. The experimental technique described here allows for the preparation of AMF spores and vesicles of F. mosseae free of any mineral substrate.
    Keywords: Spore production ; Vesicles ; Extraradical mycelium ; Root colonisation ; Root turnover
    ISSN: 0940-6360
    E-ISSN: 1432-1890
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Journal of Plant Nutrition and Soil Science, June 2010, Vol.173(3), pp.353-359
    Description: In most plant species, nutrient uptake is facilitated upon root association with symbiotic arbuscular mycorrhizal (AM) fungi. The aim of the present experiment was to test how the form in which nitrogen (N) is supplied to the growth medium affects substrate pH, AM development, and contribution of the symbiosis to phosphorus (P) uptake from sparingly available or soluble resources. Cowpea ( L. Walp) plants inoculated or noninoculated with AM fungi ( sp.) were grown in pots with a sand substrate supplied with nutrient solution. The nutrient solution was prepared either with a high or a low concentration of soluble P, and NO‐N : NH‐N ratios of 9:1 or 5:5. The substrate supplied with low‐P nutrient solution was either or not additionally amended with ground rock phosphate. Despite a high level of root colonization, AM fungi used in the present study did not appear to increase plant availability of rock phosphate. It cannot be excluded that the ability of AM root systems to acquire P from sparingly available resources differs depending on the plant and fungal genotypes or environmental conditions. The absence from the growth substrate of P‐solubilizing microorganisms able to associate with AM mycelia might also have been a reason for this observation in our study. Increased supply of NH relative to NO improved plant P availability from rock phosphate, but also had a negative effect on the extent of AM‐fungal root colonization, irrespective of the plant P‐nutritional status. Whether increasing levels of NH can also negatively affect the functioning of the AM symbiosis in terms of plant element uptake, pathogen protection or soil‐structure stabilization deserves further investigation.
    Keywords: Arbuscular Mycorrhiza ; Nitrate‐To‐Ammonium Ratio ; Rock Phosphate ; Vigna Unguiculata
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Symbiosis, 2017, Vol.73(3), pp.191-200
    Description: We investigated the effect of mineral nitrogen forms on transfer of nitrogen (N) and zinc (Zn) from attached compartments to rhodes grass ( Chloris gayana ) colonised with arbuscular mycorrhizal fungi (AMF). After being pre-cultivated in substrates with adequate nutrient supply and either AMF inoculated (+AM) or left non-inoculated (−AM), rhodes grass was positioned adjacent to an outer compartment holding a similar substrate but applied with labelled nitrogen ( 15 N) either as ammonium (NH 4 + ) or nitrate (NO 3 − ), and a high supply of Zn (150 mg kg −1 DS). Plant roots together with fungal mycelium were either allowed to explore the outer compartment (with root access) or only mycorrhizal hyphae were allowed (without root access). Within each access treatment, biomasses of rhodes grass were not significantly affected by AMF inoculation or N form. AMF contribution to plant 15 N uptake was about double in NH 4 + compared with NO 3 − -supplied treatments while the mycorrhizal influence on plant Zn uptake was insignificant. Without root access, the shoot 15 N/Zn concentration ratio was up to ten-fold higher in +AM than –AM treatments and this ratio increase was clearly more pronounced in NH 4 + than NO 3 − -supplied treatments. In conclusion, rhodes grass in symbiosis with the tested AMF acquired more N when supplied with ammonium. Moreover, there is clear indication that although the AMF have transported both nutrients (N and Zn), N was preferentially transferred as compared to Zn. We confirmed that, while rhodes grass is not able to prevent excessive Zn uptake via roots under conditions of high Zn, mycorrhiza is able to avoid excessive Zn supply to the host plant when the fungus alone has access to contaminated patches.
    Keywords: Arbuscular mycorrhiza ; Ammonium ; Nitrate ; Mycorrhizal nutrient uptake ; (Rhodes grass)
    ISSN: 0334-5114
    E-ISSN: 1878-7665
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental and Experimental Botany, 2015, Vol.109, p.288(8)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.envexpbot.2014.06.008 Byline: Yu Tong, Elke Gabriel-Neumann, Angelika Krumbein, Benard Ngwene, Eckhard George, Monika Schreiner Abstract: * AM inoculation and intercropping induced a systemic increase of indole GSL in broccoli plant. * AM inoculation and intercropping caused an increase of 3-indolylmethyl GSL in broccoli leaves. * The dry matter of broccoli and sesame were increased by AM inoculation and intercropping. * Concentration of the aromatic 2-phenylethyl GSL was less affected by inoculation with AM fungi. Author Affiliation: (a) Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren and Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany (b) Department of Crop Sciences, Humboldt University, Unter den Linden 6, 10099 Berlin, Germany (c) Faculty of Food and Agriculture, Department of Aridland Agriculture, UAE University, P.O. Box 17555, Al Ain, United Arab Emirates Article History: Received 28 January 2014; Revised 26 April 2014; Accepted 8 June 2014
    Keywords: Fungi ; Cropping Systems
    ISSN: 0098-8472
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Environmental and Experimental Botany, January 2015, Vol.109, pp.288-295
    Description: This study determined interactive effects of arbuscular mycorrhizal (AM) fungi and sesame ( ) intercropping on glucosinolate concentrations in broccoli ( var. Italica) plants. An experimental intercropping model of a horizontal three-compartment split-root system was used. It comprised the middle (combi) compartment shared by one part of the root system of the two intercropped plants, and two outer (solo) compartments with the other part of each root system. Broccoli was intercropped either with an AM host plant (sesame) or an AM non-host plant (broccoli). All intercropping combinations were cultivated in soil that was either mycorrhiza free [−M] or inoculated with [+M]. Although broccoli roots were not internally colonised by mycorrhiza, AM inoculation of broccoli intercropped with sesame induced a systemic increase of indole glucosinolates in broccoli roots and leaves. This increase differed in the individual indole glucosinolate: in particular, 3-indolylmethyl glucosinolate was enhanced in leaves and its methoxylated derivative 4-methoxy-3-indolylmethyl glucosinolate was raised in roots. These interactive effects suggest that the activity of AM fungi in the (combi) compartment was stimulated by the AM host plant sesame, leading to a persistent invasion of AM fungi of the broccoli root surface. This may lead to a constant defence response in broccoli. The broccoli biomass was not negatively affected by AM fungal inoculation. When intercropped with sesame, the dry matter of broccoli shoots was increased.
    Keywords: Glucosinolate ; Arbuscular Mycorrhizal Fungi ; Am Non-Host ; Intercropping ; Broccoli ; Sesame ; Environmental Sciences ; Botany
    ISSN: 0098-8472
    E-ISSN: 1873-7307
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Journal of Plant Nutrition and Soil Science, August 2019, Vol.182(4), pp.647-655
    Description: In terrestrial ecosystems, plants are frequently in symbiosis with arbuscular mycorrhizal fungi (AMF) with mineral nutrients and photosynthesis carbon exchanges in between. This research sought to identify the effects of phosphorus (P) levels on the nitrogen (N) uptake extraradical mycelium (ERM) and the mycorrhizal growth response (MGR) of maize plants within the AMF symbiosis. Pots were separated into root compartments and hyphae compartments (HCs) with two layers of a 30‐μm mesh membrane and an air gap in between, where only hyphae could pass through, to avoid both N diffusion and root growth effects. Maize plants were inoculated with with different N fertilization in HCs under two different P fertilization levels. Our results indicated that a strong increase in MGR with low‐P fertilization. The same tendency was not observed with high‐P fertilization, although both had a large increase in P concentration as a potential source of growth in shoot tissue of mycorrhizal plants. Substantial effects (10.5% more N) were observed in the case of high‐P availability for the host plants from ERM fed with N, whereas under low‐P conditions ERM may prioritize P uptake rather than N uptake. The AM fungi increase the uptake of N and P, which are most limiting in the soil with fewer forces from soil resources. In addition, there was still more P accumulated than N due to the high N for ERM with high‐P supply. Low N in HCs corresponded with a lower colonization rate in roots but with high hyphae density in HCs; this result suggest that N and P availability might change the ratio of extraradical to intraradical hyphae length.
    Keywords: Arbuscular Mycorrhizal Symbiosis ; Extraradical Hyphae ; Mycorrhizal Growth Response ; Mycorrhizal Hyphae ; Nitrogen Uptake ; Phosphorus Uptake
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages