Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Water Research, 15 October 2017, Vol.123, pp.513-523
    Description: Streams are important sites of transformation of dissolved organic matter (DOM). The molecular characterization of DOM-quality changes requires sophisticated analytical evaluation techniques. The goal of our study was to link molecular DOM transformation with bacterial activity. We measured the degradation of leaf leachate over a gradient of bacterial production obtained by different rates of percolation of sediments in seven experimental flumes on five sampling dates. We developed a new strategy for evaluating molecular formula data sets obtained by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), in which the time-dependent change of component abundance was fitted by a linear regression model after normalization of mass peak intensities. All components were categorized by calculating the slope (change of percent intensity per day) in each of the seven flumes. These slopes were then related to cumulative bacterial production. The concentration of DOM decreased quickly in all flumes. Bacterial activity was higher in flumes with percolated sediment than in those without percolation, whereas plankton bacterial activity was higher in flumes without percolation or without sediment. There were no differences in molecular-DOM characteristics between flumes, but there were distinct changes over time. Positive slopes, i.e. increasing intensities over time, were found for small molecules (MW 〈 450 Da) and high O/C ratios, whereas decreasing intensities were observed less often and only for large molecules and low O/C ratios. The positive slopes of produced components showed a positive relationship to bacterial production for small and for oxygen-rich components. The negative slopes of degraded components were negatively related to bacterial production for large and for oxygen-deficient molecules. Overall, the approach provided new insights into the transformation of specific molecular DOM components.
    Keywords: Bacterial Production ; Biofilm ; DOM ; Fticr MS ; Leaf Leachate ; Stream ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Environmental Monitoring and Assessment, 2013, Vol.185(11), pp.9221-9236
    Description: The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23 % of total land cover) to agricultural (70 %) and urbanised areas (7 %). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO 2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44 %) and season (15 %), demonstrating the strong effect of land use on biogeochemical parameters.
    Keywords: TERENO ; Land use ; Nutrients ; Heavy metals ; DOC ; Bode
    ISSN: 0167-6369
    E-ISSN: 1573-2959
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Environmental Earth Sciences, 2017, Vol.76(1), pp.1-25
    Description: This article provides an overview about the Bode River catchment that was selected as the hydrological observatory and main region for hydro-ecological research within the TERrestrial ENvironmental Observatories Harz/Central German Lowland Observatory. It first provides information about the general characteristics of the catchment including climate, geology, soils, land use, water quality and aquatic ecology, followed by the description of the interdisciplinary research framework and the monitoring concept with the main components of the multi-scale and multi-temporal monitoring infrastructure. It also shows examples of interdisciplinary research projects aiming to advance the understanding of complex hydrological processes under natural and anthropogenic forcings and their interactions in a catchment context. The overview is complemented with research work conducted at a number of intensive research sites, each focusing on a particular functional zone or specific components and processes of the hydro-ecological system.
    Keywords: Monitoring ; Catchment ; Water quality ; Observatory ; Water fluxes
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages