Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Michaelis, Martin  (9)
  • Cinatl Jr., J.  (9)
  • Ogbomo, Henry  (9)
Type of Medium
Language
Year
Person/Organisation
  • 1
    Language: English
    In: Biochemical Pharmacology, 2011, Vol.81(2), pp.251-258
    Description: Enzastaurin is a selective protein kinase Cβ inhibitor which is shown to have direct antitumor effect as well as suppress glycogen synthase kinase-3β (GSK-3β) phosphorylation (resulting in its activation) in both tumor tissues and peripheral blood mononuclear cells (PBMC). It is currently used in phase II trials for the treatment of colon cancer, refractory glioblastoma and diffuse large B cell lymphoma. In this study, the direct effect of enzastaurin on effector function of human natural killer (NK) cells was investigated. The results obtained showed that enzastaurin suppressed both natural and antibody-dependent cellular cytotoxicity (ADCC) of NK cells against different tumor targets. This inhibition was associated with a specific down-regulation of surface expression of NK cell activating receptor NKG2D and CD16 involved in natural cytotoxicity and ADCC respectively, as well as the inhibition of perforin release. Analysis of signal transduction revealed that enzastaurin activated GSK-3β by inhibition of GSK-3β phosphorylation. Treatment of NK cells with GSK-3β-specific inhibitor TDZD-8 prevented enzastaurin-induced inhibition of NK cell cytotoxicity. Apart from the known antitumor and antiangiogenic effects, these results demonstrate that enzastaurin suppresses NK cell activity and may therefore interfere with NK cell-mediated tumor control in enzastaurin-treated cancer patients.
    Keywords: Antibody-Dependent Cellular Cytotoxicity ; Natural Cytotoxicity ; Nkg2d ; Protein Kinase Cβ ; Glycogen Synthase Kinase-3β ; Pharmacy, Therapeutics, & Pharmacology ; Chemistry
    ISSN: 0006-2952
    E-ISSN: 1873-2968
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Biochemical Pharmacology, 15 January 2010, Vol.79(2), pp.188-197
    Description: Ribavirin, a broad-spectrum anti-viral drug, exhibits immunomodulatory activities. To study direct effects of ribavirin on natural killer (NK) cell effector functions and signaling, resting NK cells and interleukin (IL)-15-activated NK cells were treated for 5 days with therapeutic ribavirin concentrations ranging from 5 μg/ml to 20 μg/ml. Both resting and IL-15-activated NK cells that were not treated with ribavirin were used as control. Cytotoxicity assays, flow cytometry, enzyme linked immunosorbent assays, and Western blot experiments were performed to elucidate ribavirin effect on NK cells. Results showed that ribavirin (not toxic at concentrations tested; IC 〉 80 μg/ml) had no influence on lysis of target cells by freshly isolated NK cells. Conversely, ribavirin dose-dependently inhibited lysis of target cells by up to 66% and impaired interferon gamma production when IL-15-activated NK cells were used. IL-15-induced increased expression and hence function of NK cell activating receptors including NKp30, NKp44, NKp46 and NKG2D were selectively down-regulated and impaired. These inhibitory effects were associated with the down-regulation of IL-15 receptor beta and gamma expression. Accordingly, downstream events involved in NK cell signaling via IL-15 receptors including the activation of Janus kinase (Jak)-1, signal transducer and activator of transcription STAT-1, STAT-3, and STAT-5 as well as pathways responsible for NK cell degranulation including extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) were impaired. These results reveal a novel mechanism by which ribavirin exerts its immunomodulatory activities.
    Keywords: Nk Cell Activating Receptors ; Nk Cell Signaling ; Nk Cell Degranulation ; Perforin and Granzyme B Release ; Il-15 Receptors ; Pharmacy, Therapeutics, & Pharmacology ; Chemistry
    ISSN: 0006-2952
    E-ISSN: 1873-2968
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Medical Microbiology and Immunology, 2010, Vol.199(4), pp.291-297
    Description: Hypercytokinaemia is thought to contribute to highly pathogenic H5N1 influenza A virus disease. Glycyrrhizin is known to exert immunomodulatory and anti-inflammatory effects and therefore a candidate drug for the control of H5N1-induced pro-inflammatory gene expression. Here, the effects of an approved parenteral glycyrrhizin preparation were investigated on H5N1 virus replication, H5N1-induced pro-inflammatory responses, and H5N1-induced apoptosis in human monocyte-derived macrophages. Glycyrrhizin 100 μg/ml, a therapeutically achievable concentration, impaired H5N1-induced production of CXCL10, interleukin 6, and CCL5 and inhibited H5N1-induced apoptosis but did not interfere with H5N1 replication. Global inhibition of immune responses may result in the loss of control of virus replication by cytotoxic immune cells including natural killer cells and cytotoxic CD8 + T-lymphocytes. Notably, glycyrrhizin concentrations that inhibited H5N1-induced pro-inflammatory gene expression did not affect cytolytic activity of natural killer cells. Since H5N1-induced hypercytokinaemia is considered to play an important role within H5N1 pathogenesis, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
    Keywords: Glycyrrhizin ; H5N1 ; Cytokines ; Monocyte-derived macrophages
    ISSN: 0300-8584
    E-ISSN: 1432-1831
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Medical Microbiology and Immunology, 2010, Vol.199(2), pp.93-101
    Description: Tumor resistance to lysis by resting natural killer (NK) cells may be overcome by priming of NK cells with cytokines or by binding of NK activating receptors to ligands expressed on target cells. In this study, major histocompatibility complex class I (MHC-I)-negative LNCaP and MHC-I-positive DU145 cells were infected with genetically modified influenza A virus lacking the non-structural gene 1 (∆NS1 IAV). The cells were used to investigate the influence of ∆NS1 IAV infection on NK cell lysis of tumor cells as well as to prime NK cells for lysis of LNCaP and DU145 cells. While LNCaP cells infected with ΔNS1 IAV showed enhanced lysis when compared with mock-infected cells (93% ± 1.47 vs. 52% ± 0.74), both mock-infected and ΔNS1 IAV-infected DU145 cells were resistant to NK cell lysis. Moreover, NK cells primed with ΔNS1 IAV-infected LNCaP/DU145 cells effectively lysed resistant DU145 and sensitive LNCaP cells to a greater extent than NK cells primed with mock-infected LNCaP/DU145 or non-primed NK cells. Also, NK cell priming with ΔNS1 IAV-infected tumor cells enhanced extracellular signal-regulated kinase phosphorylation and increased granule release in NK cells. The increased granule release was specifically mediated by NKp46, which eventually potentiated NK cells primed with ΔNS1 IAV-infected tumor cells to overcome the inhibitory effects posed by MHC-I expression on DU145 cells. These findings show that in addition to direct lytic activity of NK cells, ΔNS1 IAV may influence anti-tumoral responses by priming NK cells.
    Keywords: Cytotoxicity ; NK cell priming ; Major histocompatibility complex class I ; Degranulation ; Oncolytic influenza A virus
    ISSN: 0300-8584
    E-ISSN: 1432-1831
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Biochemical and Biophysical Research Communications, 2006, Vol.339(1), pp.375-379
    Description: The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe, and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients.
    Keywords: Nk Cells ; Cytotoxicity ; Polio Virus Receptor ; Coupled Luminescent Method ; Neuroblastoma Cells ; Biology ; Chemistry ; Anatomy & Physiology
    ISSN: 0006-291X
    E-ISSN: 1090-2104
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: FEBS Letters, 03 April 2007, Vol.581(7), pp.1317-1322
    Description: Treatment of transformed cells from leukemia or solid tumors with histone deacetylase inhibitors (HDACi) was shown to increase their sensitivity to NK cell lysis. In this study, treatment of IL-2-activated NK cells with HDACi including suberoylanilide hydroxamic acid and valproic acid was studied. Both drugs at therapeutic concentrations inhibited NK cell cytotoxicity on human leukemic cells. This inhibition was associated with decreased expression and function of NK cell activating receptors NKp46 and NKp30 as well as impaired granule exocytosis. NFκB activation in IL-2-activated NK cells was inhibited by both HDACi. Pharmacologic inhibition of NFκB activity resulted in similar effects on NK cell activity like those observed for HDACi. These results demonstrate for the first time that HDACi prevent NK cytotoxicity by downregulation of NK cell activating receptors probably through the inhibition of NFκB activation.
    Keywords: Cytotoxicity ; Nk Cells ; Histone Deacetylase Inhibitors ; Nk Cell Activating and Inhibitory Receptors ; Nuclear Factor Kappa B ; Biology ; Chemistry ; Anatomy & Physiology
    ISSN: 0014-5793
    E-ISSN: 1873-3468
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: BMC Microbiology, 01 May 2007, Vol.7(1), p.49
    Description: Abstract Background West Nile virus (WNV) infection can cause severe meningitis and encephalitis in humans. Apoptosis was recently shown to contribute to the pathogenesis of WNV encephalitis. Here, we used WNV-infected glioma cells to study WNV-replication and WNV-induced apoptosis in human brain-derived cells. Results T98G cells are highly permissive for lytic WNV-infection as demonstrated by the production of infectious virus titre and the development of a characteristic cytopathic effect. WNV replication decreased cell viability and induced apoptosis as indicated by the activation of the effector caspase-3, the initiator caspases-8 and -9, poly(ADP-ribose)polymerase (PARP) cleavage and the release of cytochrome c from the mitochondria. Truncation of BID indicated cross-talk between the extrinsic and intrinsic apoptotic pathways. Inhibition of the caspases-8 or -9 inhibited PARP cleavage, demonstrating that both caspases are involved in WNV-induced apoptosis. Pan-caspase inhibition prevented WNV-induced apoptosis without affecting virus replication. Conclusion We found that WNV infection induces cell death in the brain-derived tumour cell line T98G by apoptosis under involvement of constituents of the extrinsic as well as the intrinsic apoptotic pathways. Our results illuminate the molecular mechanism of WNV-induced neural cell death.
    Keywords: Biology
    ISSN: 1471-2180
    E-ISSN: 1471-2180
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Medical Microbiology and Immunology, 2009, Vol.198(4), pp.257-262
    Description: A coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase released from injured target cells was used to evaluate the cytotoxicity of antigen-specific HLA class I-restricted CTLs. In contrast to established methods, CLM does not require the pretreatment of target cells with radioactive or toxic labeling substances. CTLs from healthy HLA-A2 positive donors were stimulated by autologous dendritic cells (DCs) pulsed with HLA-A2 restricted HCMV-pp65 nonamer peptides. HLA-A2 positive T2 cells or autologous monocytes pulsed with HCMV-pp65 nonamer peptide served as target cells. Lysis was detected only in HCMV-pp65-pulsed target cells incubated with CTLs from seropositive donors stimulated by HCMV-pp65-pulsed DCs. After 3 days, stimulation 38% of T2 cells and 17% of monocytes were lysed at an effector to target ratio of 8:1. In conclusion, CLM represents a highly sensitive, fast, material-saving and non-toxic/non-radioactive method for the measurement of antigen-specific CTL cytotoxic activity.
    Keywords: Cytotoxic T lymphocytes ; HLA-A2-restricted peptide ; Human cytomegalovirus ; Cytotoxicity ; Coupled luminescent method ; Dendritic cells
    ISSN: 0300-8584
    E-ISSN: 1432-1831
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Neoplasia, December 2008, Vol.10(12), pp.1402-1410
    Description: Prolonged treatment of leukemic cells with chemotherapeutic agents frequently results in development of drug resistance. Moreover, selection of drug-resistant cell populations may be associated with changes in malignant properties such as proliferation rate, invasiveness, and immunogenicity. In the present study, the sensitivity of cytarabine (1-β- -arabinofuranosylcytosine, araC)-resistant and parental human leukemic cell lines (T-lymphoid H9 and acute T-lymphoblastic leukemia Molt-4) to natural killer (NK) cell-mediated killing was investigated. The results obtained demonstrate that araC-resistant H9 and Molt-4 (H9 ARAC and Molt-4 ARAC ) cell lines are more sensitive to NK cell-mediated lysis than their respective parental cell lines. This increased sensitivity was associated with a higher surface expression of ligands for the NK cell-activating receptor NKG2D, notably UL16 binding protein-2 (ULBP-2) and ULBP-3 in H9 ARAC and Molt-4 ARAC cell lines. Blocking ULBP-2 and ULBP-3 or NKG2D with monoclonal antibody completely abrogated NK cell lysis. Constitutive phosphorylated extracellular signal-regulated kinase (ERK) but not pAKT was higher in araC-resistant cells than in parental cell lines. Inhibition of ERK using ERK inhibitor PD98059 decreased both ULBP-2/ULBP-3 expression and NK cell cytotoxicity. Furthermore, overexpression of constitutively active ERK in H9 parental cells resulted in increased ULBP-2/ULBP-3 expression and enhanced NK cell lysis. These results demonstrate that increased sensitivity of araC-resistant leukemic cells to NK cell lysis is caused by higher NKG2D ligand expression, resulting from more active ERK signaling pathway.
    Keywords: Medicine
    ISSN: 1476-5586
    E-ISSN: 1476-5586
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages