Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Applied Ecology, 1 August 2011, Vol.48(4), pp.916-925
    Description: 1. Shoreline development and the associated loss of littoral habitats represent a pervasive alteration of the ecological integrity of lakes and have been identified as major drivers for the loss of littoral biodiversity world-wide. Little is known about the effects of shoreline development on the structure of, and energy transfer in, littoral food webs, even though this information is urgently needed for management and mitigation measures. 2. We measured macroinvertebrate biomass and analysed potential food resources using stable isotopes (δ¹³C, δ¹⁵N) and mixing models to compare the complexity and the trophic base of littoral food webs between undeveloped and developed shorelines in three North German lowland lakes. 3. The lower diversity of littoral habitats found at developed shorelines was associated with lower diversity of food resources and consumers. Consequently, the number of trophic links in food webs at developed shorelines was up to one order of magnitude lower as compared with undeveloped shorelines. 4. Mixing model analysis showed that consumer biomass at undeveloped shorelines was mainly derived from the particulate organic matter (FPOM) and coarse particulate organic matter of terrestrial origin (CPOM). The contribution of CPOM to consumer biomass was twofold lower at developed shorelines, and consumer biomass was mainly derived from FPOM and suspended particulate organic matter. 5. Synthesis and application. Shoreline development impacts the flow of organic matter within littoral food webs primarily through the reduction in littoral habitat diversity. These effects are exacerbated by clearcutting of the riparian vegetation, which disrupts cross-boundary couplings between the riparian and the littoral zone. Lakeshore conservation should focus on preserving the structural integrity of the littoral zone, while restoration of coarse woody debris, reed and root habitats can be a cost-efficient measure to improve degraded lakeshores. The local effects of shoreline development demonstrated in this study might lead to whole-lake effects, but future studies are needed to derive thresholds at which shoreline development has consequences for the structure and functioning of the entire ecosystem.
    Keywords: Vegetation and Community ecology
    ISSN: 00218901
    E-ISSN: 13652664
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Hydrobiologia, 2013, Vol.717(1), pp.147-159
    Description: Reduction of flow constitutes one of the most severe human alterations to rivers, as it affects the key abiotic feature of these ecosystems. While there has been considerable progress in understanding the effects of reduced flow on benthic macroinvertebrates, cascading effects of flow reduction on dissolved oxygen concentrations (DO) have not yet received much attention. We compared the macroinvertebrate composition between reference conditions and a situation after several years of discharge reduction in the Spree River (Brandenburg, Germany). Community composition shifted from rheophilic species to species indifferent to flow conditions. Filter feeders were partially replaced by collector/gatherers, which likely reduces the retention of organic matter, and thus the self-purification capacity of the river section. These shifts were associated with low discharge during summer, cascading into daily DO concentration minima of less than 5 mg l −1 which prevailed 74% of the days in summer. This depletion of DO after flow reduction presumably caused the observed species turnover. Hence, flow reduction in lowland rivers may not only directly impair the ecological functions provided by benthic macroinvertebrates but may also act indirectly by depleting DO concentrations.
    Keywords: Low flow ; Dissolved oxygen ; Discharge ; Functional feeding groups ; Flow preferences ; Spree River
    ISSN: 0018-8158
    E-ISSN: 1573-5117
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Hydrobiologia, 2016, Vol.767(1), pp.207-220
    Description: Lake shores are characterised by a high natural variability, which is increasingly threatened by a multitude of anthropogenic disturbances including morphological alterations to the littoral zone. The European Water Framework Directive (EU WFD) calls for the assessment of lake ecological status by monitoring biological quality elements including benthic macroinvertebrates. To identify cost- and time-efficient sampling strategies for routine lake monitoring, we sampled littoral invertebrates in 32 lakes located in different geographical regions in Europe. We compared the efficiency of two sampling methodologies, defined as habitat-specific and pooled composite sampling protocols. Benthic samples were collected from unmodified and morphologically altered shorelines. Variability within macroinvertebrate communities did not differ significantly between sampling protocols across alteration types, lake types and geographical regions. Community composition showed no significant differences between field composite samples and artificially generated composite samples, and correlation coefficients between macroinvertebrate metrics calculated with both methods and a predefined morphological stressor index were similar. We conclude that proportional composite sampling represents a time- and cost-efficient method for routine lake monitoring as requested under the EU WFD, and may be applied across various European geographical regions.
    Keywords: Morphological alteration ; Macroinvertebrates ; Lake monitoring ; Method comparison ; Littoral zone ; EU Water Framework Directive
    ISSN: 0018-8158
    E-ISSN: 1573-5117
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Freshwater Biology, June 2007, Vol.52(6), pp.1022-1032
    Description: 1. Nutrient inputs from urban and agricultural land use often result in shifts in species composition of pelagic and profundal invertebrate communities. Here, we test if nutrient enrichment affects the composition of eulittoral macroinvertebrate communities, and, if so, if macroinvertebrate communities of five different habitat types reflect differences in trophic state. 2. Macroinvertebrate community composition of 36 lakes was significantly correlated with total phosphorus (TP) concentration, the proportion of coarse woody debris (CWD) and root habitats and the proportion of grassland. 3. However, macroinvertebrate communities of five major habitat types from eight lakes were more dissimilar among habitats than among trophic states. Community composition of reed and stone habitats was significantly correlated with wind exposure but not TP concentration, while macroinvertebrate composition of sand habitats was related to TP concentration and coarse sediments. In CWD and root habitats, both TP concentration and a predominance of invasive species covaried, which made it difficult to relate the observed compositional differences to either trophic state or to the effects of competition between native and invasive species. 4. Trophic state influenced the composition of eulittoral macroinvertebrate communities but to a lesser extent than has been previously reported for profundal habitats. Moreover, the effects of trophic state were nested within habitat type and were partially superseded by biotic interactions and small‐scaled habitat complexity. Although eulittoral macroinvertebrate communities were not strong indicators of the trophic state of lowland lakes, they may be used to assess other anthropogenic impacts on lakeshores.
    Keywords: Eutrophication ; Habitat ; Invasive Species ; Lakeshore ; Land Use
    ISSN: 0046-5070
    E-ISSN: 1365-2427
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Applied Ecology, December 2007, Vol.44(6), pp.1138-1144
    Description: 1 The shores of many lakes have been substantially altered by human developments such as erosion control structures or recreational beaches. Such alterations are likely to increase in the future, yet almost nothing is known about their impacts on the littoral macroinvertebrate community. 2 Macroinvertebrates were studied in seven German lowland lakes exhibiting natural shorelines (reference), retaining walls, ripraps and recreational beaches to examine impacts on the eulittoral (0–0·2 m water depth) and infralittoral (0·2–1·2 m water depth) communities associated with the three types of shoreline development. 3 Among sites, eulittoral species richness and abundance of Coleoptera, Gastropoda, Trichoptera, shredders and xylophagous species were lowest on beaches and retaining walls but ripraps did not differ significantly from natural shorelines. Retaining walls and ripraps had no significant impact on the infralittoral macroinvertebrate community. Conversely, beaches had significantly lower infralittoral species richness and abundance of Ephemeroptera, Trichoptera and shredders than natural shorelines. Furthermore, species richness was correlated positively with habitat heterogeneity expressed as number of habitat types. 4 Among lakes, whole‐lake littoral macroinvertebrate density increased with increasing proportion of developed shorelines due to increasing abundances of Chironomidae. The remaining macroinvertebrate major groups decreased with increasing proportion of shoreline development. 5 Synthesis and applications. The biological impacts of shoreline development in lowland lakes depend upon the extent to which structural complexity and heterogeneity of littoral habitats are reduced. Hence, we recommend that management programmes focus upon the conservation of littoral habitat complexity and habitat heterogeneity. The biological effects of shoreline development may be assessed efficiently by combining an assessment of the morphological status of lakeshores and information on macroinvertebrate indicator species with a defined response to the loss of their preferred habitats.
    Keywords: Biodiversity ; Coarse Woody Debris ; Habitat Complexity ; Lake Management ; Macrophytes ; Recreational Beaches ; Retaining Walls ; Riparian Clearcutting ; Ripraps
    ISSN: 0021-8901
    E-ISSN: 1365-2664
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Hydrobiologia, 2008, Vol.613(1), pp.5-12
    Description: East-German lowland lakes are highly susceptible to climatic changes, as most lakes are groundwater fed and strongly dependent on the balance of precipitation and evapotranspiration in their catchments. As a significant decrease of precipitation at least during summer is forecasted, a substantial and permanent reduction of lake water levels can be expected. Water-level fluctuations will predominantly affect the eulittoral zone where submerged tree roots form an important habitat type in lowland lakes that will become unavailable for eulittoral invertebrates. Hence, we compared the invertebrate community from eulittoral root habitats with those of infralittoral habitats to test which components of the invertebrate community would be potentially affected by the loss of root habitats, and whether infralittoral habitat types could mitigate these effects. Species richness did not significantly differ between eulittoral roots and the infralittoral habitat types. Community composition of roots significantly differed from that of coarse woody debris, sand and stones but not from reed habitats. Abundances of Coleoptera, Trichoptera and abundances of piercer, predator, shredder and xylophagous species were significantly lower on sand than on roots. Conversely, there were no significant differences in community measures between reed and root habitats except abundances of Coleoptera. Our results suggest that the loss of eulittoral root habitats will cause a significant alteration of the littoral invertebrate community. This could be mitigated if unimpaired reed habitats are available in the infralittoral zone which may serve as a refuge for most species typical for root habitats. Our results need to be verified by direct observations, especially as the extent of future water-level fluctuations is currently not assessable and might be more severe than assumed.
    Keywords: Climate change ; Habitat–species relationships ; Reed ; Roots
    ISSN: 0018-8158
    E-ISSN: 1573-5117
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Ecological Indicators, March 2019, Vol.98, pp.285-296
    Description: Human lake shore alterations often result in a substantial decrease of littoral and riparian habitat diversity and physical complexity, but the intensity at which shore alterations affect biodiversity may differ among European geographical regions. We tested if the response of littoral macroinvertebrate communities to human shoreline alterations is consistent among geographical regions. We compared community composition and diversity of human altered with those of unmodified littoral zones from 51 lakes across seven European countries in four geographical regions based on pooled composite as well as habitat-specific macroinvertebrate samples. Taxon richness and community composition differed among shore types and different habitats in all geographic regions, with morphological alteration having an overall negative effect on macroinvertebrate taxon richness. In addition, habitat heterogeneity also had a strong effect on littoral communities, with highest taxon richness found in the structurally complex macrophyte habitats in all regions. Average proportional densities of Diptera and Oligochaeta taxa generally increased in morphologically altered shores in all geographical regions, while Bivalvia, Crustacea, Ephemeroptera, Gastropoda and Trichoptera showed comparatively lower numbers in many anthropogenically altered sites. Furthermore, taxon richness was positively correlated with habitat diversity. We were able to relate changes in littoral communities to anthropogenic shoreline alterations, and linked the effect to the loss of habitats and habitat complexity. The results of our study demonstrate that littoral macroinvertebrates respond consistently negative to the influence of morphological alterations across European geographical regions in terms of biodiversity. While macroinvertebrates have previously been identified to be useful descriptors of morphological change in single countries/regions, we can now validate that they can be used to assess the ecological status of lakes in terms of morphological alterations across European regions. Our results can be used to further improve ealready existing WFD-compliant multimetric indices, for example by including taxa groups, which show a strong reaction to shoreline alterations. This could be supported by the inclusion of a suit of indicator taxa reflecting the loss of complex habitats such as macrophytes in the lake littoral.
    Keywords: Biodiversity ; Habitat Complexity ; Indicator Species ; Littoral Zone ; Macroinvertebrates ; Morphological Alteration ; Environmental Sciences
    ISSN: 1470-160X
    E-ISSN: 1872-7034
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages