Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • Rabot, E
Type of Medium
  • 1
    Language: English
    In: Vadose Zone Journal, 2015, Vol.14(8)
    Description: Water in soil is known to be a key factor for controlling N2O emissionsbecause N2O is mainly produced by denitrification in anoxic environments.In this study, we proposed a methodology to image the water and soil structureof a soil sample with X-ray computed tomography while controlling...
    Keywords: Sciences of the Universe ; Sciences of the Universe ; Continental Interfaces, Environment ; Soil ; Nitrous Oxide ; X-Ray Computed Tomography ; Gas Diffusivity ; Pore Connectivity ; Agriculture
    E-ISSN: 1539-1663
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Applied Physics A, 2016, Vol.122(11), pp.1-9
    Description: Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water.
    Keywords: Green Buildings ; Diagnostic Imaging;
    ISSN: 0947-8396
    E-ISSN: 1432-0630
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: SOIL, 2018, Vol.4(1), pp.83-92
    Description: The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision-making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here, we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.
    Keywords: Soil Stability ; Evaluation ; Agricultural Production ; Modelling ; Agricultural Management ; Biodiversity ; Soil Stability ; Food Production ; Water Quality ; Raw Materials ; Biological Activity ; Decision Making ; Soil Improvement ; Soil Science ; Terrestrial Environments ; Interactions ; Water Quality ; Soil Management ; Modelling ; Raw Materials ; Raw Materials ; Soil Sciences ; Water Quality ; Soils ; Framework ; Stability ; Nutrient Cycles ; Mathematical Models ; Agricultural Production ; Biodiversity ; Nutrients (Mineral) ; Soils ; Decision Making ; Water Quality ; Biodiversity ; Biodiversity;
    E-ISSN: 2199-398X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Geoderma, 01 January 2019, Vol.333, pp.149-162
    Description: The capacity of soils to store organic carbon represents a key function of soils that is not only decisive for climate regulation but also affects other soil functions. Recent efforts to assess the impact of land management on soil functionality proposed that an indicator- or proxy-based approach is a promising alternative to quantify soil functions compared to time- and cost-intensive measurements, particularly when larger regions are targeted. The objective of this review is to identify measurable biotic or abiotic properties that control soil organic carbon (SOC) storage at different spatial scales and could serve as indicators for an efficient quantification of SOC. These indicators should enable both an estimation of actual SOC storage as well as a prediction of the SOC storage potential, which is an important aspect in land use and management planning. There are many environmental conditions that affect SOC storage at different spatial scales. We provide a thorough overview of factors from micro-scales (particles to pedons) to the global scale and discuss their suitability as indicators for SOC storage: clay mineralogy, specific surface area, metal oxides, Ca and Mg cations, microorganisms, soil fauna, aggregation, texture, soil type, natural vegetation, land use and management, topography, parent material and climate. As a result, we propose a set of indicators that allow for time- and cost-efficient estimates of actual and potential SOC storage from the local to the regional and subcontinental scale. As a key element, the fine mineral fraction was identified to determine SOC stabilization in most soils. The quantification of SOC can be further refined by including climatic proxies, particularly elevation, as well as information on land use, soil management and vegetation characteristics. To enhance its indicative power towards land management effects, further “functional soil characteristics”, particularly soil structural properties and changes in the soil microbial biomass pool should be included in this indicator system. The proposed system offers the potential to efficiently estimate the SOC storage capacity by means of simplified measures, such as soil fractionation procedures or infrared spectroscopic approaches.
    Keywords: Clay Mineralogy ; Specific Surface Area ; Metal Oxides ; Microorganisms ; Soil Fauna ; Soil Aggregation ; Soil Texture ; Soil Type ; Natural Vegetation ; Land Use and Management ; Topography ; Parent Material ; Climate ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages