Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • Lang, F  (6)
  • Schack-Kirchner, Helmer  (6)
Type of Medium
  • 1
    Language: English
    In: Forest Ecology and Management, 15 November 2015, Vol.356, pp.136-143
    Description: Phosphorus is an essential yet scarce macronutrient, and as such forest nutrition often relies on cycling of P between biomass and soils through litterfall and roots. For technical and soil protection reasons, modern harvesting systems create thick brash mats on skid trails by depositing residues, thus concentrating P there. What portion of this redistributed P is immobilized, lost, or recycled could be significant to forest nutrition and management. However, open questions exist regarding the quantity and fate of P deposited on skid trials. The aim of this study was to determine how much P is redistributed to skid trails and what happens to that P. We modeled the amount of P deposited on a skid trail during a whole-tree thinning of an Mill. stand, and quantified P stocks in the forest floor and mineral soil five years after the operation. An estimated 60% of harvested P from the encatchment was deposited on the skid trail. Five years after the harvest, forest floor P stocks in the skid trail dropped from an extrapolated 8.9 to 4.4 g m . The difference of 4.5 g m of P was not evident in mineral soil stocks, and loss through runoff or leaching would be minimal. With the greatest concentration of roots in the forest floor on the middle of the skid trail, mineralization and uptake of the missing P was the most likely explanation. This suggests that accumulated P on skid trails can be recycled through uptake by trees. Further testing in other stands and on which vegetation takes up accumulated P is still needed.
    Keywords: Nutrient Cycling ; Plant Uptake ; Whole-Tree Harvesting ; Brash Mats ; Allometric Modeling ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Plant Nutrition and Soil Science, April 2017, Vol.180(2), pp.220-230
    Description: Standard procedures to assess P availability in soils are based on batch experiments with various extractants. However, in most soils P nutrition is less limited by bulk stocks but by strong adsorption and transport limitation. The basic principle of root‐phosphate uptake is to strip phosphate locally from the solid phase by forming a radial depletion zone in the soil solution, optionally enhanced by release of mobilizing substances. Microdialysis (MD), a well‐established method in pharmacokinetics, is capable to mimic important characteristics of P root uptake. The sampling is by diffusional exchange through a semipermeable membrane covering the probes with their sub‐mm tubular structure. Additionally, the direct environment of the probe can be chemically modified by adding, ., carboxylates to the perfusate. This study is the first approach to test the applicability of MD in assessing plant available phosphate in soils and to develop a framework for its appropriate use.We used MD in stirred solutions to quantify the effect of pumping rate, concomitant ions, and pH value on phosphate recovery. Furthermore, we measured phosphate yield of top‐soil material from a beech forest, a non‐fertilized grassland, and from a fertilized corn field. Three perfusates have been used based on a 1 mM KNO solution: pure (1), with 0.1 mM citric acid (2), and with 1 mM citric acid (3). Additionally, a radial diffusion model has been parametrized for the stirred solutions and the beech forest soil.Results from the tests in stirred solutions were in good agreement with reported observations obtained for other ionic species. This shows the principal suitability of the experimental setup for phosphate tests. We observed a significant dependency of phosphate uptake into the MD probes on dialysate pumping rate and on ionic strength of the outside solution. In the soils, we observed uptake rates of the probes between 1.5 × 10 and 6.7 × 10 mol s cm in case of no citrate addition. Surprisingly, median uptake rates were mostly independent of the bulk soil stocks, but the P‐fertilized soil revealed a strong tailing towards higher values. This indicates the occurrence of hot P spots in soils. Citrate addition increased P yields only in the higher concentration but not in the forest soil. The order of magnitude of MD uptake rates from the soil samples matched root‐length related uptake rates from other studies. The micro‐radial citrate release in MD reflects the processes controlling phosphate mobilization in the rhizosphere better than measurements based on “flooding” of soil samples with citric acid in batch experiments. Important challenges in MD with phosphate are small volumes of dialysate with extremely low concentrations and a high variability of results due to soil heterogeneity and between‐probe variability. We conclude that MD is a promising tool to complement existing P‐analytical procedures, especially when spatial aspects or the release of mobilizing substances are in focus.
    Keywords: Plant Availability ; Diffusion Limitation ; Spatial Heterogeneity ; Carboxylates
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Soil & Tillage Research, November 2016, Vol.163, pp.14-20
    Description: Rutting caused by heavy machinery during logging operations can lead to loss of trafficability which is a considerable problem in designated skid trail systems. Wide base tires and bogie tracks are common accepted technical options to minimize rut formation. In this work the suitability of 940 mm super wide base tires on trafficability preservation was tested in comparison to 710 mm wide base tires and common used ECO-TRACK™ bogie tracks. An experiment with repeated passes by a heavy forest machine (forwarder) was conducted. Digital elevation models (DEM) of the ruts were created using photogrammetry to assess rut morphology parameters: rut depth, material displacement and erosion relevant depression storage capacity. Photogrammetry was discovered to be a time and cost efficient method to provide highly resolved 3D-data with high precision. Super wide base tires distinctly reduced rut formation compared to 710 mm tires and bogie tracks by more than 50% and 40%, respectively. Displacement of soil material led to the formation of prominent bulges that can be prone to erosion. 710 mm tires and bogie tracks caused the most voluminous bulges due to their strong rut formation. The investigated tire equipment differently affected the surface depression storage of water in the skid trails due to their different lug morphology. Ruts of bogie tracks could retain significantly more surface water than ruts produced by tires. Nonetheless, the absolute depression storage in all cases is rather low, implying that erosion would occur in case of heavy precipitation.
    Keywords: Skid Trail ; Logging ; Photogrammetry ; Agriculture
    ISSN: 0167-1987
    E-ISSN: 1879-3444
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Forests, 01 September 2017, Vol.8(10), p.358
    Description: Forest harvesting removes and redistributes nutrients through felling and forwarding. Substantial quantities of nutrients can accumulate in brash mats on permanent skid trails, but their availability and uptake after multiple thinnings on soils susceptible to leaching are unknown. In this study, we modeled the deposition of base cations and phosphorus on a permanent skid trail after five thinnings of a Picea abies (L.) Karst. stand, and measured the resulting nutrient stocks in both the forest floor and mineral soil. An estimated 35%, 44%, 41%, and 61% of harvested Ca, K, Mg, and P, respectively, were redistributed to the skid trail. Of those deposited stocks, 32–65% of nutrients remained in decomposed brash material on the skid trail. Mineral soil stocks for Ca, K, and P were significantly higher in the skid trail than in the stand, which included minor increases in bioavailable pools. Skid trail root densities were not lower than the stand while bulk densities were only partially higher. Both would not limit nutrient uptake. There were no significant relations between needle nutrient concentrations and distance to the skid trail. Altogether, these results indicate that nutrient uptake from the skid trail was minimal despite their accumulation, chemical availability, and physical accessibility. This suggests that other factors such as liming and frequent thinning disturbances can repress uptake of available nutrients on skid trails.
    Keywords: Soil Management ; Picea Abies ; Brash Mats ; Needle Nutrition ; Whole-Tree Harvesting ; Liming ; Forestry
    E-ISSN: 1999-4907
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: European Journal of Soil Science, May 2019, Vol.70(3), pp.454-465
    Description: Soil structural traits provide links between soil structure and ecosystem functioning. The size and stability of soil aggregates are assumed to provide information on aggregate formation and turnover. A standard method to analyse these traits is to determine the mass distribution on sieves. The major drawback of this method is the small size resolution because of a small number of size classes. A promising, yet still unexplored, method for size distribution analysis in soil science, is dynamic image analysis, which foremost allows a much larger diameter resolution and the assessment of both size and shape distributions. The aim of our study was to validate the applicability of dynamic digital image analysis in combination with sonication to characterize the size and shape distribution and the stability of aggregates. We used two different heterogeneous reference materials and three different soil samples with different aggregate stabilities to test this method. The soil samples were chosen based on increasing clay, humus and calcium carbonate contents. The method yielded reproducible results for diameter and shape distributions for both reference materials and soil samples. The most important improvement compared to well‐established methods was the extremely large size resolution. This allows specification of the pattern of diameter‐dependent breakup curves by relating them to specific soil properties. The information on sphericity adds supplementary information on the aggregates released. We found much lower sphericity of 1‐mm aggregates mobilized from topsoil samples formed from the activity of living organisms than aggregates mobilized from subsoil samples formed mainly by physicochemical processes. Highlights Our aim was to validate dynamic digital image analysis to characterize soil aggregates.Dynamic image analysis allows high resolution and shape analysis compared to established methods.The method yielded reproducible results for diameter and shape distributions.We established high‐resolution disruption patterns of aggregates enabling new approaches in future research.
    Keywords: Aggregate Breakdown Dynamics ; Particle‐Size Distribution ; Ultrasonic Dispersion
    ISSN: 1351-0754
    E-ISSN: 1365-2389
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Agricultural and Forest Meteorology, 15 February 2019, Vol.265, pp.424-434
    Description: Molecular diffusion is commonly assumed as main physical process of gas transport in soils. However, non-diffusive gas transport processes like the so-called pressure-pumping effect can affect soil gas transport significantly. The pressure-pumping effect has only been detected indirectly and the underlying mechanisms remain unclear. Using a novel method the soil gas transport at a conifer forest site was monitored over a seven-week period. Airflow and air pressure were simultaneously measured above and below the forest canopy and air pressure was also measured in the soil. During episodes of high above-canopy wind speed, the effective soil gas diffusivity temporarily increased due to pressure-pumping. The enhancement of the gas transport rate in the topsoil reached up to 30%. We found that the best meteorological proxy explaining this effect was related to air pressure fluctuations measured at soil surface and not the mean wind speed directly above ground. While sub-canopy wind speeds continuously decreased from the bottom of the tree crown to the soil surface, amplitudes of the air pressure fluctuations were nearly constant in the whole sub-canopy profile and in the soil. We hypothesize that the air pressure fluctuations responsible for pressure-pumping are related to characteristics of above-canopy airflow rather than to airflow directly above the soil surface.
    Keywords: Pressure-Pumping ; Soil Gas Transport ; Air Pressure Fluctuations ; Tracer Gas ; Agriculture ; Meteorology & Climatology
    ISSN: 0168-1923
    E-ISSN: 1873-2240
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages