Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Scherer-Lorenzen, Michael  (32)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 29 March 2016, Vol.113(13), pp.3557-62
    Description: Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
    Keywords: Fundiveurope ; Biodiversity ; Ecosystem Functioning ; Spatial Scale ; Β-Diversity ; Biodiversity ; Forests
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Forest Ecology and Management, 2012, Vol.265, pp.191-200
    Description: ► The tree species richness were experimentally controlled and sufficiently replicated. ► Overall soil exploitation was not significantly affected by species richness. ► Belowground competition is size-asymmetric. ► Belowground competition from other species did not affect fine-root morphology. ► Dominant species benefits more from species admixing. Belowground interactions in diverse plant communities may be decisive for the performance of individual species and community stability. Here we assessed the effect of tree species richness on belowground fine-root morphology and belowground competition between four different species in a 6-year-old field biodiversity experiment to test the hypotheses: (i) overall fine-root exploitation (total fine-root length and surface area) increases with tree species richness; (ii) belowground interspecific competition is size-symmetric. Overall fine-root length and surface area in the centre of neighbourhoods of four saplings were initially low (1.03 km m and 2.00 m m ), but reached 3.13 km m and 6.50 m m , respectively, across all species combinations after two growing seasons in the ingrowth cores. However, no significant differences were found among the different tree species richness levels. The saplings of different tree species grew in proportion to their initial sizes with respect to aboveground basal area increments. For belowground fine-root growth in mixed neighbourhoods, however, and had higher fine-root growth rates in ingrowth cores than in monocultures, whereas the reverse was true for and . After two years of root ingrowth, the competitive ability indexes ( = 0.07, = 0.08, = −0.19, = −0.18) revealed that belowground competition in this sapling stand was size-asymmetric and that conifers showed a higher competitive ability, when fine-root growth was related to aboveground standing basal area. Nutrient enrichment in ingrowth cores did not affect proliferation rates and morphology of fine roots significantly. Fine-root morphologies of different species were remarkably different, but within each species the morphology was not significantly influenced by tree species richness of neighbourhoods. Our results show that belowground competition may occur earlier than aboveground in mixed forest stands and fine-root growth of dominant species benefitted more from mixing with other species than that of inferior species.
    Keywords: Fine Root Morphology ; Tree Species Richness ; Niche Complementarity ; Morphological Plasticity ; Size-Asymmetric Competition ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Oecologia, 2012, Vol.169(4), pp.1105-1115
    Description: The phenomenon of overyielding in species-diverse plant communities is mainly attributed to complementary resource use. Vertical niche differentiation belowground might be one potential mechanism for such complementarity. However, most studies that have analysed the diversity/productivity relationship and belowground niche differentiation have done so for fully occupied sites, not very young tree communities that are in the process of occupying belowground space. Here we used a 5–6 year old forest diversity experiment to analyse how fine-root (〈2 mm) production in ingrowth cores (0–30 cm) was influenced by tree species identity, as well as the species diversity and richness of tree neighbourhoods. Fine-root production during the first growing season after the installation of ingrowth cores increased slightly with tree species diversity, and four-species combinations produced on average 94.8% more fine-root biomass than monocultures. During the second growing season, fine-root mortality increased with tree species diversity, indicating an increased fine-root turnover in species-rich communities. The initial overyielding was attributable to the response to mixing by the dominant species, Pseudotsuga menziesii and Picea abies , which produced more fine roots in mixtures than could be expected from monocultures. In species-rich neighbourhoods, P. abies allocated more fine roots to the upper soil layer (0–15 cm), whereas P. menziesii produced more fine roots in the deeper layer (15–30 cm) than in species-poor neighbourhoods. Our results indicate that, although there may be no lasting overyielding in the fine-root production of species-diverse tree communities, increasing species diversity can lead to substantial changes in the production, vertical distribution, and turnover of fine roots of individual species.
    Keywords: Species diversity ; Species richness ; Fine roots ; Overyielding ; Vertical niche differentiation ; BIOTREE
    ISSN: 0029-8549
    E-ISSN: 1432-1939
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLoS ONE, 2016, Vol.11(12)
    Description: Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m 2 ). The species pool consists of six congeneric species pairs of European and North American origin (12 species in total) planted in monocultures and mixtures (1, 2, 4, 6 species). We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.
    Keywords: Research Article ; Biology And Life Sciences ; Biology And Life Sciences ; Ecology And Environmental Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Ecology And Environmental Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Ecology And Environmental Sciences ; Biology And Life Sciences ; Research And Analysis Methods ; Biology And Life Sciences ; Ecology And Environmental Sciences ; Biology And Life Sciences ; Ecology And Environmental Sciences ; Biology And Life Sciences ; Biology And Life Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science (New York, N.Y.), 05 October 2018, Vol.362(6410), pp.80-83
    Description: Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
    Keywords: Biodiversity ; Climate Change ; Extinction, Biological ; Forests ; Trees -- Classification
    ISSN: 00368075
    E-ISSN: 1095-9203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    Description: Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality....
    Keywords: Β-Diversity ; Biodiversity ; Ecosystem Functioning ; Fundiveurope ; Spatial Scale
    ISSN: 0027-8424
    Source: DataCite
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Tree Physiology, 2010, Vol. 30(9), pp.1192-1208
    Description: Productivity of tree plantations is a function of the supply, capture and efficiency of use of resources, as outlined in the Production Ecology Equation. Species interactions in mixed-species stands can influence each of these variables. The importance of resource-use efficiency in determining forest productivity has been clearly demonstrated in monocultures; however, substantial knowledge gaps remain for mixtures. This review examines how the physiology and morphology of a given species can vary depending on whether it grows in a mixture or monoculture. We outline how physiological and morphological shifts within species, resulting from interactions in mixtures, may influence the three variables of the Production Ecology Equation, with an emphasis on nutrient resources [nitrogen (N) and phosphorus (P)]. These include (i) resource availability, including soil nutrient mineralization, N 2 fixation and litter decomposition; (ii) proportion of resources captured, resulting from shifts in spatial, temporal and chemical patterns of root dynamics; (iii) resource-use efficiency. We found that more than 50% of mixed-species studies report a shift to greater above-ground nutrient content of species grown in mixtures compared to monocultures, indicating an increase in the proportion of resources captured from a site. Secondly, a meta-analysis showed that foliar N concentrations significantly increased for a given species in a mixture containing N 2 -fixing species, compared to a monoculture, suggesting higher rates of photosynthesis and greater resource-use efficiency. Significant shifts in N- and P-use efficiencies of a given species, when grown in a mixture compared to a monoculture, occurred in over 65% of studies where resource-use efficiency could be calculated. Such shifts can result from changes in canopy photosynthetic capacities, changes in carbon allocation or changes to foliar nutrient residence times of species in a mixture. We recommend that future research focus on individual species' changes, particularly with respect to resource-use efficiency (including nutrients, water and light), when trees are grown in mixtures compared to monocultures. A better understanding of processes responsible for changes to tree productivity in mixed-species tree plantations can improve species, and within-species, selection so that the long-term outcome of mixtures is more predictable.
    Keywords: Light - Use Efficiency ; Litter Decomposition ; Nitrogen Fixation ; Nitrogen - Use Efficiency ; Phosphorus - Use Efficiency ; Root Stratification ; Water - Use Efficiency.
    ISSN: 0829-318X
    E-ISSN: 1758-4469
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: PARASITES & VECTORS, 2018
    Description: Background: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. Methods: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. Results: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood. Conclusions: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.
    Keywords: Biology And Life Sciences ; Earth And Environmental Sciences ; Climate Gradient ; Dilution Habitat ; Disease Ecology ; Ecosystem Disservice ; Functional Ecology ; Landscape Epidemiology ; Land-Use Change ; Lyme Disease Risk ; Multi-Scale Analysis ; Smallforest ; Co-Feeding Transmission ; Tick-Borne Pathogens ; Lyme Borreliosis ; Sensu-Lato ; Agricultural Landscapes ; Litter Decomposition ; Small Mammals ; Functional Traits ; Seed Predation ; Acari
    ISSN: 1756-3305
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: European Journal of Forest Research, 2013, Vol.132(4), pp.593-606
    Description: Experimental forest plantations to study biodiversity–ecosystem functioning (BEF) relationships have recently been established in different regions of the world, but subtropical biomes have not been covered so far. Here, we report about the initial survivorship of 26 tree species in the first such experiment in subtropical China. In the context of the joint Sino–German–Swiss Research Unit “BEF-China,” 271 experimental forest plots were established using 24 naturally occurring tree species and two native commercial conifers. Based on the survival inventories carried out in November 2009 and June 2010, the overall survival rate was 87 % after the first 14 months. Generalized mixed-effects models showed that survival rates of seedlings were significantly affected by species richness, the species’ leaf habit (deciduous or evergreen), species identity, planting date, and altitude. In the first survey, seedling establishment success decreased with increasing richness levels, a tendency that disappeared in the second survey after replanting. Though evergreen species performed less well than deciduous species with establishment rates of 84 versus 93 % in the second survey, their planting success exceeded the general expectation for subtropical broad-leaved evergreen species. These results have important implications for establishing mixed-species plantations for diversity conservation and improvement of ecosystem functioning in the Chinese subtropics and elsewhere. Additional costs associated with mixed-species plantations as compared to conventional plantations also demonstrate the potential of upscaling BEF experiments to large-scale afforestation projects.
    Keywords: BEF-China ; Biodiversity and ecosystem functioning ; Tree diversity experiment ; Jiangxi ; Forest plantation success ; Seedling performance
    ISSN: 1612-4669
    E-ISSN: 1612-4677
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: NATURE COMMUNICATIONS, 2016
    Description: There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.
    Keywords: Earth And Environmental Sciences ; Species Richness ; Soil Microbial Biomass ; Statistical Inevitability ; Current Knowledge ; Extraction Method ; Plant Diversity ; Services ; Nitrogen ; Carbon ; Challenges
    ISSN: 2041-1723
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages