Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    In: Journal of Analytical Atomic Spectrometry, 2011, Vol.26(2), pp.450-455
    Description: The demand to quantify the elemental composition of very small sample amounts and/or of samples which form artefacts during conventional sample preparations is increasing. Example applications are the quantification of engineered metal(loid) based nanomaterials in environmental samples, e.g. (i) the direct analyses of engineered nanoparticle (ENP) suspensions showing broad particle size distributions which are not suitable to be applied via the spray chamber in ICP-MS analyses, (ii) measurements of single invertebrates and tissue of selected organs which were exposed to ENPs, and (iii) whole plants or plant parts e.g. from Lemna sp. The use of imaging based high resolution methods like atomic force microscopy or environmental scanning electron microscopy creates the need to quantify the elemental composition of the visualised objects as directly and exactly as possible, at very low limits of detection. With this study the authors present a method/concept for the multi-element quantification of analytes from ENPs in complex matrices with different degrees of complexity by graphite furnace electrothermal vaporisation coupled to inductively coupled plasma quadrupole mass spectrometry equipped with collision/reaction cell (GF-ETV-ICP-QMS).
    Keywords: Demand ; Imaging ; Invertebrates ; Mathematical Analysis ; Matrices ; Matrix Methods ; Nanomaterials ; Nanoparticles ; Instruments and Measurements (So);
    ISSN: 0267-9477
    E-ISSN: 1364-5544
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.3-19
    Description: Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
    Keywords: Transport ; Aggregation ; Analytics ; Environment ; Aging ; Ecotoxicology ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages