Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Simon, Judy  (33)
Type of Medium
Language
Year
  • 1
    In: PLoS ONE, 2015, Vol.10(5)
    Description: Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming) during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur , Q . petraea , Q . pubescens ) were tested on two different soil types (i.e. acidic and calcareous). Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat ( Q . pubescens ) compared to Q . robur and Q . petraea . Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity.
    Keywords: Research Article
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Forest Ecology and Management, 2011, Vol.262(2), pp.105-114
    Description: ► Competition for N between young and adult beech is reduced by seasonal timing. ► Beech seedlings favour N uptake in spring, adult beech trees in autumn. ► Removal of vegetation components does not play a role in this competition. ► Competition between plants and soil microorganisms is, therefore, not avoided. Plant growth, reproduction, and biomass allocation may be affected differently by nitrogen availability depending on tree size and age. In this context, competition for limited N may be avoided by different strategies of N acquisition between different vegetation components (i.e., seedlings, mature trees, other woody and herbaceous understorey). This study investigated in a field experiment whether the competition for N between different vegetation components in beech forests was prevented via seasonal timing of N uptake and affected by microbial N use. For this purpose, a removal approach was used to study the seasonal effects on N uptake and N metabolites in adult beech trees and beech natural regeneration, as well as soil microbial processes of inorganic N production and utilisation. We found that the competition for N between beech natural regeneration and mature beech trees was reduced by seasonal avoidance strategies (“good parenting”) of N uptake regardless of the N sources used. In spring, organic and inorganic N uptake capacity was significantly higher in beech seedlings compared to adult beech trees, whereas in autumn mature beech trees showed the highest N uptake rates. Removal of vegetation components did not result in changes in soil microbial N processes in the course of the growing season. Thus, N resources released by the removal of vegetation components were marginal. This consistency in soil microbial N processes indicates that competition between plants and soil microorganisms for N was not avoided by timing of acquisition during the vegetation period, but existed during the entire growing season. In conclusion, N nutrition in the studied forest ecosystem seems to be optimally attuned to European beech.
    Keywords: Fagus Sylvatica ; N Uptake ; N Metabolites ; Soil Microorganisms ; Soil N Processes ; Removal Approach ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Applied and Environmental Microbiology, Sept 1, 2015, Vol.81(17), pp.5957-5967
    Description: Study is conducted to test the hypothesis that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two distinct climatic conditions shows differences in N acquisition. To test these hypotheses, young trees from dryer conditions and also from cooler, moist climate conditions are transplanted and it concluded that the ectomycorrhizal community influences N transfer to its host and fungal community from dry condition are efficient in N acquisition.
    Keywords: Mycorrhizae – Research ; Mycorrhizae – Physiological Aspects ; Beeches – Research ; Beeches – Physiological Aspects
    ISSN: 0099-2240
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Plant and Soil, 2013, Vol.368(1), pp.519-534
    Description: Background and aims: Litter decomposition is regulated by e.g. substrate quality and environmental factors, particularly water availability. The partitioning of nutrients released from litter between vegetation and soil microorganisms may, therefore, be affected by changing climate. This study aimed to elucidate the impact of litter type and drought on the fate of litter-derived N in beech seedlings and soil microbes. Methods: We quantified super(15)N recovery rates in plant and soil N pools by adding super(15)N-labelled leaf and/or root litter under controlled conditions. Results: Root litter was favoured over leaf litter for N acquisition by beech seedlings and soil microorganisms. Drought reduced super(15)N recovery from litter in seedlings thereby affecting root N nutrition. super(15)N accumulated in seedlings in different sinks depending on litter type. Conclusions: Root turnover appears to influence (a) N availability in the soil for plants and soil microbes and (b) N acquisition and retention despite a presumably extremely dynamic turnover of microbial biomass. Compared to soil microorganisms, beech seedlings represent a very minor short-term N sink, despite a potentially high N residence time. Furthermore, soil microbes constitute a significant N pool that can be released in the long term and, thus, may become available for N nutrition of plants.
    Keywords: Litter types ; Root litter ; Leaf litter ; Decomposition ; Microbial biomass ; Plant N metabolism ; Soil N pools ; N recovery
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Plant and Soil, 2013, Vol.369(1), pp.657-668
    Description: Aims: Our aims were to characterize the fate of leaf-litter-derived nitrogen in the plant-soil-microbe system of a temperate beech forest of Southern Germany and to identify its importance for N nutrition of beech seedlings. Methods: super(15)N-labelled leaf litter was traced in situ into abiotic and biotic N pools in mineral soil as well as into beech seedlings and mycorrhizal root tips over three growing seasons. Results: There was a rapid transfer of super(15)N into the mineral soil already 21 days after tracer application with soil microbial biomass initially representing the dominant litter-N sink. However, super(15)N recovery in non-extractable soil N pools strongly increased over time and subsequently became the dominant super(15)N sink. Recovery in plant biomass accounted for only 0.025 % of super(15)N excess after 876 days. After three growing seasons, super(15)N excess recovery was characterized by the following sequence: non-extractable soil N〉〉extractable soil N including microbial biomass〉〉plant biomass〉ectomycorrhizal root tips. Conclusions: After quick vertical dislocation and cycling through microbial N pools, there was a rapid stabilization of leaf-litter-derived N in non-extractable N pools of the mineral soil. Very low super(15)N recovery in beech seedlings suggests a high importance of other N sources such as root litter for N nutrition of beech understorey.
    Keywords: Nitrogen cycling ; Beech ; 15N-labelled leaf litter ; 15N tracing ; Microbial biomass ; Ectomycorrhiza
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Forest Ecology and Management, 01 July 2012, Vol.275, pp.60-67
    Description: ► We study two adult populations under different microclimatic conditions. ► We compare genetic diversity of the adult populations and their natural regeneration. ► Case study based on isozymes and microsatellite markers. ► We identified two “outlier microsatellite loci”, exhibiting directional selection. ► Natural selection account for different genetic structures of the adult populations. Due to its drought sensitivity, the performance and competitiveness of beech as a favoured species of forest management in Central Europe is likely to be negatively affected by the prognosticated climate change, leading to major impacts on the vulnerability of managed forest ecosystems. We studied the genetic differentiation between two populations from a relatively cold and wet northeast (representing the current climate of the majority of beech forests in Central Europe) and a relatively warm and dry southwest facing slope (representing the future climate of an increasing area covered by beech forests in Central Europe) at the same forest site to investigate the adaptation processes in these two populations under different microclimatic conditions. For this purpose, two different techniques, , nuclear microsatellites (neutral) and isozyme markers (adaptive), were applied to adult trees and natural regeneration at both slopes. Although microsatellites are considered to be neutral markers, they have been shown in several studies to give signals of selectively-driven changes. In our study, two of the five microsatellites behaved as “outlier loci”, exhibiting directional selection. Our results show independent of the technique applied that natural regeneration of the southwest slope and the natural regeneration and adult trees of the northeast slope were genetically closer than the adult trees from the southwest slope. Thus, we conclude that natural selection and potential adaptation account for genetic changes and different genetic structures among the two adult populations in this case study.
    Keywords: Fagus Sylvatica ; Climate Change ; Isozymes ; Nuclear Microsatellites ; Beech ; Adaptation ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Applied and environmental microbiology, 01 September 2015, Vol.81(17), pp.5957-67
    Description: Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate.
    Keywords: Fagus -- Microbiology ; Fungi -- Metabolism ; Mycorrhizae -- Metabolism ; Nitrogen -- Metabolism
    ISSN: 00992240
    E-ISSN: 1098-5336
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental and Experimental Botany, March, 2013, Vol.87, p.207(11)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.envexpbot.2012.11.005 Byline: Rodica Pena (a), Judy Simon (b), Heinz Rennenberg (b)(c), Andrea Polle (a) Keywords: Cost-benefit; Drought; Mycorrhiza; Shade;.sup.15N; Nitrogen partitioning Abstract: Display Omitted Author Affiliation: (a) Busgen-Institut, Abteilung: Forstbotanik und Baumphysiologie, Georg-August Universitat Gottingen, Busgenweg 2, 37077 Gottingen, Germany (b) Institut fur Forstbotanik und Baumphysiologie Professur fur Baumphysiologie, Georges-Kohler Allee, Geb. 53/54, 79085 Freiburg, Germany (c) College of Science, King Saud University, Riyadh 11451, Saudi Arabia Article History: Received 9 June 2012; Revised 11 November 2012; Accepted 12 November 2012
    Keywords: Architecture ; Droughts ; Cost Benefit Analysis
    ISSN: 0098-8472
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Forest Ecology and Management, 01 April 2017, Vol.389, pp.46-58
    Description: The Loess Plateau in China constitutes an area short of soil nitrogen and organic carbon due to local land degradation induced by various factors (i.e. long term changes of land use, climate conditions, and soil properties). The present study aimed to examine the effects of species and land management by afforestation on tree N acquisition capacity and soil N and C availability in degraded soils of the Loess Plateau area. We quantified root N uptake of inorganic and organic N sources as well as soil N and C availability, both at the tree species (i.e. L., L. and Carr.) and the land management (i.e. arable vs. monoculture vs. mixed afforested stands) levels. Our results indicated that afforestation improved soil N and organic C availabilities compared to abandoned arable land ( 〈 0.05). In particular, the presence of N -fixing enhanced root N concentrations (ca. 3.0 times) and soil NO (ca. 5.4 times), soil total N (ca. 1.9 times) and organic C (ca. 3.4 times) availabilities, but decreased soil NH (ca. −33%), microbial biomass carbon (ca. −74%) and nitrogen (ca. −54%) in the mixed stand compared to monoculture. Under the experimental conditions applied, the afforested trees preferred organic over inorganic N compounds as well as NO over NH ; in monoculture had a highest root amino acids N uptake capacities (i.e. 76.6 ± 7.7 nmol N (g fw) h for glutamine, 90.3 ± 8.9 nmol N (g fw) h for arginine) compared to other tree species whereas such high uptake capacities were largely repressed in the mixed stand with . Thus, in the Loess Plateau area, the inter-planting system of with N -fixing could improve the total soil N and organic C pools as well as plant N cycling compared to traditional arable land use and monoculture system. This study shows that inter-planting with economic fruit trees can be considered a successful strategy for soil regeneration by afforestation in future land management projects.
    Keywords: Root N Uptake ; Soil N Availability ; Monoculture ; Mixed Stand ; Degraded Soil ; Afforestation ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Applied and Environmental Microbiology, 2010, Vol. 76(6), p.1831
    Description: The relationships between plant carbon resources, soil carbon and nitrogen content, and ectomycorrhizal fungal (EMF) diversity in a monospecific, old-growth beech (Fagus sylvatica) forest were investigated by manipulating carbon flux by girdling. We hypothesized that disruption of the carbon supply would not affect diversity and EMF species numbers if EM fungi can be supplied by plant internal carbohydrate resources or would result in selective disappearance of EMF taxa because of differences in carbon demand of different fungi. Tree carbohydrate status, root demography, EMF colonization, and EMF taxon abundance were measured repeatedly during 1 year after girdling. Girdling did not affect root colonization but decreased EMF species richness of an estimated 79 to 90 taxa to about 40 taxa. Cenococcum geophilum, Lactarius blennius, and Tomentella lapida were dominant, colonizing about 70% of the root tips, and remained unaffected by girdling. Mainly cryptic EMF species disappeared. Therefore, the Shannon-Wiener index (H') decreased but evenness was unaffected. H' was positively correlated with glucose, fructose, and starch concentrations of fine roots and also with the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC/DON), suggesting that both H' and DOC/DON were governed by changes in belowground carbon allocation. Our results suggest that beech maintains numerous rare EMF species by recent photosynthate. These EM fungi may constitute biological insurance for adaptation to changing environmental conditions. The preservation of taxa previously not known to colonize beech may, thus, form an important reservoir for future forest development.
    Keywords: Engineering ; Biology ; Economics;
    ISSN: 0099-2240
    ISSN: 00992240
    E-ISSN: 10985336
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages