Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Steinmetz, Zacharias  (7)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Analytical chemistry, 07 August 2018, Vol.90(15), pp.8793-8799
    Description: The use of plastic materials in daily life, industry, and agriculture can cause soil pollution with plastic fragments down to the micrometer scale, i.e., microplastics. Quantitative assessment of microplastics in soil has been limited so far. Until now, microplastic analyses in soil require laborious sample cleanup and are mostly restricted to qualitative assessments. In this study, we applied thermogravimetry-mass spectrometry (TGA-MS) to develop a method for the direct quantitative analysis of poly(ethylene terephthalate) (PET) without further sample pretreatment. For this, soil samples containing 1.61 ± 0.15 wt % organic matter were spiked with 0.23-4.59 wt % PET bottle recyclate microplastics. dl-Cysteine was used as the internal standard (IS). Sample mixtures were pyrolyzed with a 5 K min ramp (40-1000 °C), while sample mass loss and MS signal intensity of typical PET pyrolysis products were recorded. We found MS signal intensities linearly responding to microplastic concentrations. The most-promising results were obtained with the IS-corrected PET pyrolysis product vinylbenzene/benzoic acid ( m/ z = 105, adj. R = 0.987). The limits of detection and quantification were 0.07 and 1.72 wt % PET, respectively. Our results suggest that TGA-MS can be an easy and viable complement to existing methods such as pyrolysis or thermogravimetry-thermal desorption assays followed by gas chromatography/mass spectrometry detection or to spectral microscopy techniques.
    Keywords: Microplastics ; Quantitative-Analysis ; Pyrolysis ; Terephthalate ; Soil-Pollution ; Soil-Analysis ; Ground-Samples ; Mass-Reduction ; Cysteine ; Benzoic-Acid ; Agricultural-Industry ; Fragment ; Organic-Medium ; Detection-Limit ; Thermogravimetric-Analysis ; Spectral-Technique ; Mikroplastik ; Quantitative Analyse ; Pyrolyse ; Terephthalat ; Bodenverschmutzung ; Bodenanalyse ; Bodenprobe ; Massenverringerung ; Cystein ; Benzoesäure ; Agrikultur ; Fragment ; Organisches Material ; Nachweisgrenze ; Thermogravimetrie ; Spektralverfahren ; Engineering ; Chemistry;
    ISSN: 00032700
    E-ISSN: 1520-6882
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: The journal of physical chemistry. A, 30 March 2017, Vol.121(12), pp.2367-2376
    Description: Water molecules in soil organic matter (SOM) can form clusters bridging neighboring molecular segments (water molecule bridges, WaMBs). WaMBs are hypothesized to enhance the physical entrapment of organic chemicals and to control the rigidity of the SOM supramolecular structure. However, the understanding of WaMBs dynamics in SOM is still limited. We investigated the relation between WaMBs stability and the physicochemical properties of their environment by treating a sapric histosol with various solvents and organic chemicals. On the basis of predictions from molecular modeling, we hypothesized that the stability of WaMBs, measured by differential scanning calorimetry, increases with the decreasing ability of a chemical to interact with water molecules of the WaMBs. The interaction ability between WaMBs and the chemicals was characterized by linear solvation energy relationships. The WaMBs stability in solvent-treated samples was found to decrease with increasing ability of a solvent to undergo H-donor/acceptor interactions. Spiking with an organic chemical stabilized (naphthalene) or destabilized (phenol) the WaMBs. The WaMBs stability and matrix rigidity were generally reduced strongly and quickly when hydrophilic chemicals entered the soil. The physicochemical aging following this destabilization is slow but leads to successive WaMBs stabilization and matrix stiffening.
    Keywords: Humus – Research ; Organic Compounds – Chemical Properties ; Polar Molecules – Chemical Properties;
    ISSN: 10895639
    E-ISSN: 1520-5215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Soils and Sediments, 2017, Vol.17(4), pp.1092-1100
    Description: To access, purchase, authenticate, or subscribe to the full-text of this article, please visit this link: http://dx.doi.org/10.1007/s11368-016-1623-y Byline: Zacharias Steinmetz (1), Kilian G. J. Kenngott (1), Mohamed Azeroual (1), Ralf B. Schafer (2), Gabriele E. Schaumann (1) Keywords: Copper-based fungicides; Fertilizer-derived uranium; Heavy metal speciation; Binding forms; Organic farming; Viticulture Abstract: Purpose Particularly in organic viticulture, copper compounds are intentionally released into the environment as fungicide, whereas uranium originates from conventional phosphate fertilization. Both activities contribute to the metal contamination in wine-growing areas. This pilot study aimed to better understand how soil properties influence the presence and environmental fate of copper and uranium with respect to viticultural management. Materials and methods We characterized metal binding forms, i.e., their association with different soil constituents, in organically and conventionally cultivated vineyard soils and adjacent upstream and downstream sediments. The available metal fraction and the fractions associated with manganese oxides, organic matter, iron oxides, and total contents were extracted sequentially. Results and discussion Total soil copper ranged from 200 to 1600 mg kg.sup.-1 with higher contents in topsoil than subsoil. The majority of copper (42--82%) was bound to soil organic matter. In all fractions, copper contents were up to 2-fold higher in organic than in conventional vineyards, whereas the sediment concentrations were independent of the adjacent viticultural management. A net increase of copper in downstream sediments was found only when water-extractable organic carbon (WEOC) in an adjacent vineyard was elevated. With 11 [+ or -] 1 mg kg.sup.-1, total uranium was 25% higher in conventional than in organic vineyard soils. Its affinity to iron or WEOC potentially rendered uranium mobile leading to a substantial discharge to downstream sediments. Conclusions Translocation of copper and uranium from vineyards into adjacent stream sediments may rather be attributed to WEOC and iron contents than the viticultural management. Follow-up studies should scrutinize the processes driving metal availability and transport as well as their interaction at the aquatic--terrestrial interface. Author Affiliation: (1) Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstra[sz]e 7, 76829, Landau, Germany (2) Institute for Environmental Sciences, Group of Quantitative Landscape Ecology, University of Koblenz-Landau, Fortstra[sz]e 7, 76829, Landau, Germany Article History: Registration Date: 27/11/2016 Received Date: 04/07/2016 Accepted Date: 27/11/2016 Online Date: 08/12/2016 Article note: Responsible editor: Dong-Mei Zhou Electronic supplementary material The online version of this article (doi: 10.1007/s11368-016-1623-y) contains supplementary material, which is available to authorized users.
    Keywords: Copper-based fungicides ; Fertilizer-derived uranium ; Heavy metal speciation ; Binding forms ; Organic farming ; Viticulture
    ISSN: 1439-0108
    E-ISSN: 1614-7480
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Chemosphere, September 2019, Vol.230, pp.210-218
    Description: Phenolic compounds occur in a variety of plants and can be used as model compounds for investigating the fate of organic wastewater, lignin, or soil organic matter in the environment. The aim of this study was to better understand and differentiate mechanisms associated with photo- and biodegradation of tyrosol, vanillin, vanillic acid, and coumaric acid in soil. In a 29 d incubation experiment, soil spiked with these phenolic compounds was either subjected to UV irradiation under sterile conditions or to the native soil microbial community in the dark. Changes in the isotopic composition (δ C) of phenolic compounds were determined by gas chromatography–isotope ratio mass spectrometry and complemented by concentration measurements. Phospholipid-derived fatty acid and ergosterol biomarkers together with soil water repellency measurements provided information on soil microbial and physical properties. Biodegradation followed pseudo-first-order dissipation kinetics, enriched remaining phenolic compounds in C, and was associated with increased fungal rather than bacterial biomarkers. Growing mycelia rendered the soil slightly water repellent. High sample variation limited the reliable estimation of apparent kinetic isotope effects (AKIEs) to tyrosol. The AKIE of tyrosol biodegradation was 1.007 ± 0.002. Photooxidation kinetics were of pseudo-zero- or first-order with an AKIE of 1.02 ± 0.01 for tyrosol, suggesting a hydroxyl-radical mediated degradation process. Further research needs to address δ C variation among sample replicates potentially originating from heterogeneous reaction spaces in soil. Here, nuclear magnetic resonance or nanoscopic imaging could help to better understand the distribution of organic compounds and their transformation in the soil matrix.
    Keywords: Polyphenols ; Allelochemicals ; Olive Mill Wastewater ; Soil Fungi ; Stable Isotopes ; Metabolic Pathways ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Chemosphere, June 2019, Vol.225, pp.810-819
    Description: Methods for analysis of microplastic in soils are still being developed. In this study, we evaluated the potential of a soil universal model method (SUMM) based on thermogravimetry (TGA) for the identification and quantification of microplastics in standard loamy sand. Blank and spiked soils (with amounts of one of four microplastic types) were analyzed by TGA. For each sample, thermal mass losses (TML) in 10 °C intervals were extracted and used for further analysis. To explain and demonstrate the principles of SUMM, two scenarios were discussed. The first refers to a rare situation in which an uncontaminated blank of investigated soil is available and TML of spiked and blank soils are subtracted. The results showed that the investigated microplastics degraded in characteristic temperature areas and differences between spiked and blank soils were proportional to the microplastics concentrations. The second scenario reflects the more common situation where the blank is not available and needs to be replaced by the previously developed interrelationships representing soil universal models. The models were consequently subtracted from measured TML. Sparse principal component analysis (sPCA) identified 8 of 14 modeled differences between measured TMLs and the universal model as meaningful for microplastics discrimination. Calibrating various microplastics concentrations with the first principal component extracted from sPCA resulted in linear fits and limits of detection in between environmentally relevant microplastics concentrations. Even if such an approach using calculated standards still has limitations, the SUMM shows a certain potential for a fast pre-screening method for analysis of microplastics in soils.
    Keywords: Microplastics ; Soil Universal Model Method ; Mass Loss on Ignition ; Modelling ; Thermogravimetry ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Science of the Total Environment, 15 April 2016, Vol.550, pp.690-705
    Description: Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers and public perception from both a psychological and economic perspective in order to develop new support strategies for the transition into a more environment-friendly food production.
    Keywords: Plasticulture ; Soil Organic Matter Dynamics ; Biodegradation ; Microplastics ; Ecosystem Services ; Ecological Transformation ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Journal of Plant Nutrition and Soil Science, August 2015, Vol.178(4), pp.641-648
    Description: Olive oil production generates large amounts of olive mill wastewater (OMW). OMW has a high nutrient content and could serve as fertilizer, but its fatty and phenolic constituents induce soil water repellency, phytotoxicity, and acidification. An appropriate season of OMW application may mitigate negative consequences while preserving beneficial effects. In order to investigate this, a field study was conducted, in which OMW was applied to an olive orchard in Israel either in winter or summer. Soil–water interactions (water drop penetration time, hydraulic conductivity), soil physicochemical parameters, phenolic compounds, and soil biological activity (bait‐lamina test) were determined 12 to 18 months after OMW application. The results showed elevated K contents in all treatments, but all other soil properties of winter treatments were comparable to the control, which suggested a certain recovery potential of the soil when OMW is applied in winter. By contrast, summer treatments revealed a ten‐fold higher soil water repellency, a three‐times lower biological activity, and a four‐fold higher content of phenolic compounds, independently of whether the soil was kept moist by irrigation or not. Thus, the OMW constituents were neither degraded nor leached by winter rain when applied during the hot season. Further research is needed to distinguish leaching and biodegradation effects, and to understand the development of the composition and degradation kinetics of organic OMW constituents.
    Keywords: Water Re‐Use ; Biodegradation ; Bait‐Lamina Test ; Soil Water Repellency ; Phenolic Compounds ; Waste Water
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages