Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Tittel, Jorg  (12)
Type of Medium
Language
Year
  • 1
    In: Journal of Phycology, August 2009, Vol.45(4), pp.807-811
    Description: Algae of various taxonomic groups are capable of assimilating dissolved organic carbon (DOC) from their environments (mixotrophy). Recently, we reported that, with increasing biomass of mixotrophs, heterotrophic bacteria did not increase. We hypothesized that algal uptake of external DOC may outweigh their release of DOC by exudation (H1). Here, we addressed an alternative hypothesis that algae did not assimilate external DOC but constrained the release of DOC (H2). In chemostat experiments, we cultured the mixotrophic Negoro together with heterotrophic bacteria. As external substrates, we used glucose, which was potentially available for both bacteria and algae, or fructose, which was available only for bacteria. We increased the biomass of algae by the stepwise addition of phosphorus. Bacterial biomass did not increase in experiments using glucose or when fructose was offered, suggesting that mechanisms other than algal mixotrophy (H1) kept concentrations of bacteria low. Measured exudation rates (percent extracellular release, PER) of mixotrophic algae ( W. Krüger) were very low and ranged between 1.0% and 3.5% at low and moderately high phosphorus concentrations. In contrast, an obligately phototrophic alga ( H. Ettl) showed higher exudation rates, particularly under phosphorus limitation (70%). The results support H2. If mixotrophy is considered as a mechanism to recycle organic exudates from near the cell surface, this would explain why algae retained mixotrophic capabilities although they cannot compete with bacteria for external organic carbon.
    Keywords: Algae ; Bacteria ; Chemostat ; Competition ; Doc ; Exudation ; Mixotroph
    ISSN: 0022-3646
    E-ISSN: 1529-8817
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Science of the Total Environment, 01 April 2016, Vol.548-549, pp.51-59
    Description: Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6–12% of total DOM released by the catchments was degraded within the tributaries.
    Keywords: Bacterial Production ; Doc ; Freshness Index ; Humification Index ; Phosphorus ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 28 October 2003, Vol.100(22), pp.12776-81
    Description: The majority of organisms can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such "mixotrophy" is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, and the benefits must outweigh these costs. In accordance with mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light, mineral nutrients, and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716-724]. Here, we demonstrate the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance steeply. The data suggest that, as a consequence, grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from competition with and losses to higher grazers. Furthermore, the mixotrophs structured prey abundance along the vertical light gradient, creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient-poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.
    Keywords: Food Chain ; Chlamydomonas -- Physiology
    ISSN: 0027-8424
    E-ISSN: 10916490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of Microbiological Methods, February 2016, Vol.121, pp.8-10
    Description: A method for recovering CO respired by bacterioplankton for analysis of carbon isotopes was adapted for use with standard laboratory equipment without a technically demanding harvest line. The recovered CO was more depleted in C than the dissolved organic carbon (DOC) source, which suggests a selective respiration of older carbon.
    Keywords: Dissolved Organic Carbon (Doc) ; Inorganic Carbon (Ic) ; Degradation ; Carbon Isotopes ; Reservoir ; Biology
    ISSN: 0167-7012
    E-ISSN: 1872-8359
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Plankton Research, 2012, Vol. 34(2), pp.102-112
    Description: Aquatic bacteria are considered to exhibit a paradoxical behaviour. They luxuriously consume phosphorus, the element often restricting the abundance of algae, which provide the organic substrates maintaining bacterial growth. Here, we test the hypothesis that bacteria can limit their uptake of phosphorus and increase the availability of phosphorus to algae. The physiological costs for bacteria must be compensated for by a surplus of photosynthetic exudates facilitating higher biomass production. To test the potential of such an economic behaviour, we used a new differential equation model that was parameterized by independent experiments. Model results indicate that this potential does exist. As a consequence, we conducted continuous growth chemostat experiments. Bacteria did not leave more phosphorus to, “high exudation” algae compared with algae with low release. Therefore, the hypothesis was not supported by the experiments. However, bacteria significantly increased production 1.4–1.8-fold in cultures with “high exudation” algae. This was explained by an increase in conversion of organic carbon from growth medium into bacteria biomass. Algal exudates were quantitatively negligible but could act as growth factors. The results show that biomass of algae and bacteria cannot be predicted solely by mineral nutrients and carbon as assumed by the classical theory.
    Keywords: Bacteria ; Phytoplankton ; Exudation ; Phosphorus ; Differential Equation Model
    ISSN: 0142-7873
    E-ISSN: 1464-3774
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Freshwater Biology, August 2004, Vol.49(8), pp.1062-1071
    Description: 1. Lakes formed in mining pits often contain high concentrations of dissolved ferric iron and sulphate (e.g. 2 and 16 mmol L, respectively) and the pH is buffered between 2.5 and 3.5. Efforts to neutralise their water are based on the stimulation of lake internal, bacterial iron‐ and sulphate reduction. Electron donors may be supplied by organic carbon compounds or indirectly by enhancement of primary production. Here, we investigated the function of mixotrophic algae, which can potentially supplement or deplete the organic carbon pool, in the carbon metabolism and alkalinity budget of an acidic mining lake. 2. Two weeks after organic substrates had been added in a large mesocosm of 30 m diameter, a bloom of occurred, reaching a biovolume of 80 mm L. Growth experiments using filtered lake water showed that the alga reduced the overall dissolved organic carbon (DOC) concentration despite significant photosynthetic activity. However, when were grown together with natural bacterioplankton, net DOC consumption did not increase. 3. Uptake experiments using [C]‐glucose indicated that bacteria dominated glucose uptake and remineralisation. Therefore, the DOC leached in the water column was processed mainly by planktonic bacteria. Leached DOC must be regarded as loss, not transferred by larger organisms to the sediment, where reduction processes take place. 4. From phytoplankton biomass and production 2 years after fertilisation we estimated that pelagic photosynthesis does not supply an electron donor capacity capable of reducing more than 2% of actual stock of acidity per year. We estimated that only the benthic primary production was in a range to compensate for ongoing inputs of iron and sulphate.
    Keywords: Acidic ; Chlamydomonas ; Mining Lakes ; Mixotrophic ; Organic Carbon
    ISSN: 0046-5070
    E-ISSN: 1365-2427
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Microbial Ecology, 2017, Vol.74(3), pp.534-549
    Description: Microbial decomposition of terrestrial carbon may be enhanced by the addition of easily decomposable compounds, a phenomenon referred to as priming effect. We investigated the microbial decomposition of terrestrial dissolved organic carbon (DOC) in one-stage and two-stage flow-through cultures (chemostats) in the absence and presence of growing phytoplankton as phytoplankton-derived organic matter might facilitate the mineralization of more refractory terrestrial compounds. Peat water and soil leachate were used as terrestrial substrates, and only slight DOC decomposition was observed in the absence of phytoplankton for both substrates. A priming effect was revealed via 14 C data. Priming was more pronounced for the peat water substrate than for the soil leachate. The total DOC concentrations increased for both substrates in the presence of phytoplankton due to exudation and cell lysis. Samples from the soil leachate experiments were analyzed using ultra-high-resolution mass spectrometry (FT-ICR MS). Predominantly, the same saturated, aliphatic molecules with H/C ratios 〉1.5 were completely decomposed in the absence and in the presence of phytoplankton. The decomposition of more stable molecules differed in their intensity. Oxidized and unsaturated molecules with H/C ratios 〈1.0 and O/C ratios 〉0.4 were more strongly decomposed in phytoplankton presence (i.e., under priming). We conclude that an aquatic priming effect is not easily detectable via net concentration changes alone, and that qualitative investigations of the DOC processed by bacterial decomposition are necessary to detect aquatic priming.
    Keywords: Radiocarbon ; C ; Ultra-high-resolution mass spectrometry ; FT-ICR MS ; DOM quality
    ISSN: 0095-3628
    E-ISSN: 1432-184X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Limnologica, 2008, Vol.38(3), pp.360-366
    Description: Since amino acids represent an important component of dissolved organic carbon in lakes, we investigated the uptake and consumption of leucine by several phytoplankton species. Firstly, we measured the leucine uptake of 28 phytoplankton species (several cyanobacteria and chlorophytes, one diatom, and one euglenophyte) and the uptake kinetics by a chlorophyte ( ) compared to that of heterotrophic bacteria. Furthermore, we tested whether the algae can decrease the concentration of leucine in the light to lower levels than in darkness (hypothesis 1), and whether algae with high minimum substrate requirements exhibit higher consumption rates at plentiful concentrations compared to algae with high substrate reduction capability but low maximum consumption rate (hypothesis 2). Thirteen species of cyanobacteria and chlorophytes showed leucine uptake. Specific uptake rates by were lower in the light than in the dark and much lower than that of heterotrophic bacteria. In the consumption experiments, several algae consumed leucine with higher rates and to lower residual concentrations in the dark than in the light, but with lower rates and not to lower concentrations than heterotrophic bacteria. Residual concentrations and consumption rates were not related to algal cell volume and chlorophyll content. Consumption rates were negatively related to residual concentrations, i.e. algae with higher consumption rates also depleted leucine to lower concentrations. Although the hypotheses were not supported, several algae were capable of removing leucine to equally low concentrations as bacteria so that algal uptake of amino acids is potentially important in natural waters.
    Keywords: Algae ; Amino Acids ; Bacteria ; Competition ; Cyanobacteria ; Doc ; Leucine ; Mixotrophy ; Oceanography ; Ecology
    ISSN: 0075-9511
    E-ISSN: 1873-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Journal of phycology, 2008, Vol.44(3), pp.616-623
    Description: Dissolved organic carbon (DOC) constitutes the bulk of organic carbon in aquatic environments. The importance of DOC utilization by mixotrophic algae is unclear since heterotrophic bacteria are regarded as more efficient users. We tested the hypothesis that algae decrease the DOC concentration in the light to lower levels than in darkness resulting in competitive exclusion of heterotrophic bacteria according to the mechanistic competition theory. We investigated (a) the uptake kinetics of glucose as a model substrate by two cultured algae and mixed bacteria populations, (b) the competition for glucose between algae and bacteria in chemostats, (c) the effect of discontinuous glucose supply in chemostats, and (d) the minimum glucose concentrations achieved in cultures of algae and bacteria. Bacteria showed higher specific-glucose-uptake rates than algae. In chemostats, algae became extinct in the dark and coexisted in the light where they decreased bacteria to lower densities. Discontinuous glucose supply promoted the algae compared to continuous substrate addition. Several algae consumed glucose to lower concentrations in the dark than in the light and showed lower or equal residual glucose concentrations than bacteria. Residual concentrations were not related to allometric traits (cell volume) and photosynthetic potential (chl content). Overall, the hypothesis was not supported, and mechanisms of competition for DOC obviously differed from those for particulate prey. However, since some algae showed lower or equal residual glucose concentrations than bacteria, algal dark uptake of DOC may be important in deep layers of many waters. ; Includes references ; p. 616-623.
    Keywords: Bacteria ; Algae ; Mixotrophy ; Doc ; Competition
    ISSN: 0022-3646
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Microbial Ecology, 2015, Vol.69(2), pp.361-371
    Description: The fate of allochthonous dissolved organic carbon (DOC) in aquatic systems is primarily controlled by the turnover of heterotrophic bacteria. However, the roles that abiotic and biotic factors such as light and DOC release by aquatic primary producers play in the microbial decomposition of allochthonous DOC is not well understood. We therefore tested if light and autochthonous DOC additions would increase allochthonous DOC decomposition rates and change bacterial growth efficiencies and community composition (BCC). We established continuous growth cultures with different inocula of natural bacterial communities and alder leaf leachates (DOC leaf ) with and without light exposure before amendment. Furthermore, we incubated DOC leaf together with autochthonous DOC from lysed phytoplankton cultures (DOC phyto ). Our results revealed that pretreatments of DOC leaf with light resulted in a doubling of bacterial growth efficiency (BGE), whereas additions of DOC phyto or combined additions of DOC phyto and light had no effect on BGE. The change in BGE was not accompanied by shifts in the phylogenetic structure of the BCC, but BCC was influenced by the DOC source. Our results highlight that a doubling of BGE is not necessarily accompanied by a shift in BCC and that BCC is more strongly affected by resource properties.
    Keywords: Bacterial growth efficiency ; Continuous cultures ; Carbon decomposition ; Leaf litter ; Photolysis
    ISSN: 0095-3628
    E-ISSN: 1432-184X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages