Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Vereecken, Harry  (408)
Language
Year
  • 1
    Language: English
    In: Water Research, 2010, Vol.44(4), pp.1288-1296
    Description: A study was conducted to understand the role of cell concentration and metabolic state in the transport and deposition behaviour of with and without substrate addition. Column experiments using the short-pulse technique (pulse was equivalent to 0.028 pore volume) were performed in quartz sand operating under saturated conditions. For comparison, experiments with microspheres and inactive (killed) bacteria were also conducted. The effluent concentrations, the retained particle concentrations and the cell shape were determined by fluorescent microscopy. For the transport of metabolically-active without substrate addition a bimodal breakthrough curve was observed, which could be explained by the different breakthrough behaviour of the rod-shaped and coccoidal cells of . The 70:30 rod/coccoid ratio in the influent drastically changed during the transport and it was about 20:80 in the effluent and in the quartz sand packing. It was assumed that the active rod-shaped cells were subjected to shrinkage into coccoidal cells. The change from active rod-shaped cells to coccoidal cells could be explained by oxygen deficiency which occurs in column experiments under saturated conditions. Also the substrate addition led to two consecutive breakthrough peaks and to more bacteria being retained in the column. In general, the presence of substrate made the assumed stress effects more pronounced. In comparison to microspheres and inactive (killed) bacteria, the transport of metabolically-active bacteria with and without substrate addition is affected by differences in physiological state between rod-shaped and the formed stress-resistant coccoidal cells of .
    Keywords: Bacteria Transport ; Colloid Deposition ; Cell Morphology ; Physiological State ; Pseudomonas Fluorescens ; Oxygen Stress ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2016, Vol.536(7617), p.E1
    Description: In their study, Evaristo et al.1 collected an extensive data set on the basis of which they statistically determined the isotopic compositions of the plant water source (δ 18Ointersect and δ 2Hintersect, called respectively δ 18Ointercept and δ 2Hintercept in their paper) as the x and y coordinates in (δ 18O, δ 2H) space of the intersection between the local meteoric water line (LMWL) and the plant xylem water 'evaporation line' (EL) for a range of climates and vegetation types.
    Keywords: Isotopes ; Groundwater ; Groundwater Recharge ; Stream Flow ; Precipitation ; Botany ; Flowers & Plants;
    ISSN: 0028-0836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Water Research, 01 May 2013, Vol.47(7), pp.2572-2582
    Description: Saturated sand-packed column experiments were conducted to investigate the influence of physicochemical factors on the transport and retention of surfactant stabilized silver nanoparticles (AgNPs). The normalized concentration in breakthrough curves (BTCs) of AgNPs increased with a decrease in solution ionic strength (IS), and an increase in water velocity, sand grain size, and input concentration ( ). In contrast to conventional filtration theory, retention profiles (RPs) for AgNPs exhibited uniform, nonmonotonic, or hyperexponential shapes that were sensitive to physicochemical conditions. The experimental BTCs and RPs with uniform or hyperexponential shape were well described using a numerical model that considers time- and depth-dependent retention. The simulated maximum retained concentration on the solid phase ( ) and the retention rate coefficient ( ) increased with IS and as the grain size and/or decreased. The RPs were more hyperexponential in finer textured sand and at lower because of their higher values of . Conversely, RPs were nonmonotonic or uniform at higher and in coarser sand that had lower values of , and tended to exhibit higher peak concentrations in the RPs at lower velocities and at higher solution IS. These observations indicate that uniform and nonmonotonic RPs occurred under conditions when was approaching filled conditions. Nonmonotonic RPs had peak concentrations at greater distances in the presence of excess amounts of surfactant, suggesting that competition between AgNPs and surfactant diminished close to the column inlet. The sensitivity of the nonmonotonic RPs to IS and velocity in coarser textured sand indicates that AgNPs were partially interacting in a secondary minimum. However, elimination of the secondary minimum only produced recovery of a small portion (〈10%) of the retained AgNPs. These results imply that AgNPs were largely irreversibly interacting in a primary minimum associated with microscopic heterogeneity. ► The presence of surfactant affected the shape of the retention profiles (RPs). ► RPs transitioned from hyperexponential, to nonmonotonic, and then to uniform. ► Nanoparticles mainly irreversibly interacted with microscopic heterogeneity.
    Keywords: Stabilized Silver Nanoparticles ; Saturated Porous Media ; Time- and Depth-Dependent Retention ; Surfactant ; Competitive Attachment ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of Hydrology, October 2015, Vol.529, pp.1754-1767
    Description: Soil moisture plays a key role in the water and energy balance in soil, vegetation and atmosphere systems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution water–energy–biogeochemistry land surface modelling capabilities. These modelling capabilities should also recognize epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics. Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale, and how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution long-term simulations were conducted in the highly instrumented TERENO hydrological observatory of the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modelling with the Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless soil moisture sensor network. The estimated parameters were then used for 3D simulations of water transport using the integrated parallel simulation platform ParFlow-CLM. The simulated soil moisture dynamics, as well as evapotranspiration (ET) and runoff, were compared with long-term field observations to illustrate how well the model was able to reproduce the water budget dynamics. We investigated different anisotropies of hydraulic conductivity to analyze how fast lateral flow processes above the underlying bedrock affect the simulation results. For a detail investigation of the model results we applied the empirical orthogonal function (EOF) and wavelet coherence methods. The EOF analysis of temporal–spatial patterns of simulated and observed soil moisture revealed that introduction of heterogeneity in the soil porosity effectively improves estimates of soil moisture patterns. Our wavelet coherence analysis indicates that wet and dry seasons have significant effect on temporal correlation between observed and simulated soil moisture and ET. Our study demonstrates the usefulness of the EOF and wavelet coherence methods for a more in-depth validation of spatially highly resolved hydrological 3D models.
    Keywords: 3d Hydrological Simulation ; Soil Moisture ; Eof Analysis ; Wavelet Coherence Analysis ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Journal of Hydrology, October 2015, Vol.529, pp.872-889
    Description: Many attempts have been made to characterize particle size distribution (PSD) curves using different mathematical models, which are primarily used as a basis for estimating soil hydraulic properties. The principle step in using soil PSD to predict soil hydraulic properties is determining an accurate and continuous curve for PSD. So far, the characteristics of the PSD models, their fitting accuracy, and the effects of their parameters on the shape and position of PSD curves have not been investigated. In this study all developed PSD models, their characteristics, behavior of their parameters, and their fitting capability to the UNSODA database soil samples were investigated. Results showed that beerkan estimation of soil transfer (BEST), two and three parameter Weibull, Rosin and Rammler (1 and 2), unimodal and bimodal Fredlund, and van Genuchten models were flexible over the entire range of soil PSD. Correspondingly, the BEST, two and three parameter Weibull, Rosin and Rammler (1 and 2), hyperbolic and offset renormalized log-normal models possessed a high fitting capability over the entire range of PSD. The few parameters of the BEST, Rosin and Rammler (1 and 2), and two parameter Weibull models provides ease of use in soil physics and mechanics research. Thus, they are seemingly fit with acceptable accuracy in predicting the PSD curve. Although the fractal models have physical and mathematical basis, they do not have the adequate flexibility to contribute a description of the PSD curve. Different aspects of the PSD models should be considered in selecting a model to describe a soil PSD.
    Keywords: Fitting ; Mathematical Psd Models ; Models Parameters ; Particle Size Distribution ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Chemosphere, Jan, 2014, Vol.95, p.470(8)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.chemosphere.2013.09.100 Byline: Stephan Sittig, Roy Kasteel, Joost Groeneweg, Diana Hofmann, Bjorn Thiele, Stephan Koppchen, Harry Vereecken Abstract: acents We show transformation and sequestration of the antibiotic sulfadiazine in two soils. acents Transformation products were found in liquid phase and extracts from the sorbed phase. acents We used a compartment model including all species and did global optimization. acents Sorption and transformation are concentration dependent. Article History: Received 12 December 2012; Revised 21 September 2013; Accepted 29 September 2013
    Keywords: Soils ; Sulfadiazine
    ISSN: 0045-6535
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Water Research, 01 February 2013, Vol.47(2), pp.933-944
    Description: Water-saturated column experiments were conducted to investigate the effect of input concentration ( ) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L ) of functionalized C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostatic conditions that were unfavorable for attachment. The breakthrough curves (BTCs) for MWCNT typically did not reach a plateau, but had an asymmetric shape that slowly increased during breakthrough. The retention profiles (RPs) were not exponential with distance, but rather exhibited a hyper-exponential shape with greater retention near the column inlet. The collected BTCs and RPs were simulated using a numerical model that accounted for both time- and depth-dependent blocking functions on the retention coefficient. For a given , the depth-dependent retention coefficient and the maximum solid phase concentration of MWCNT were both found to increase with decreasing grain size. These trends reflect greater MWCNT retention rates and a greater number of retention locations in the finer textured sand. The fraction of the injected MWCNT mass that was recovered in the effluent increased and the RPs became less hyper-exponential in shape with higher due to enhanced blocking/filling of retention locations. This concentration dependency of MWCNT transport increased with smaller grain size because of the effect of pore structure and MWCNT shape on MWCNT retention. In particular, MWCNT have a high aspect ratio and we hypothesize that solid phase MWCNT may create a porous network with enhanced ability to retain particles in smaller grain sized sand, especially at higher . Results demonstrate that model simulations of MWCNT transport and fate need to accurately account for observed behavior of both BTCs and RPs. ► Breakthrough curves and retention profiles were measured and numerically modeled. ► We used very low (0.005–1 mg L ) input concentrations of carbon nanotubes (CNTs). ► Breakthrough of CNTs increased with increasing input concentration and grain size. ► Data were simulated well using time- and depth-dependent retention coefficients. ► Model predictions indicate the transport of CNTs to distances greater than 12 cm.
    Keywords: Carbon Nanotubes ; Column Experiments ; Quartz Sand ; Breakthrough Curves ; Retention Profiles ; Transport Modeling ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Chemosphere, 2011, Vol.84(4), pp.409-414
    Description: ► The sorption of a branched nonylphenol isomer (NP111) on humic acids was investigated by a dialysis technique. ► Humic acids were characterized by solid-state C DP/MAS NMR spectroscopy. ► A relationship between the organic carbon-normalized sorption coefficients of NP111 and the aliphaticity of humic acids was established. By using dialysis equilibrium experiments, the sorption of a branched nonylphenol isomer [4-(1-ethyl-1,3-dimethylpentyl)-phenol] (NP111) on various humic acids (HAs) isolated from river sediments and two reference HAs was studied. The HAs were characterized by solid-state C direct polarization/magic angle spinning nuclear magnetic resonance ( C DP/MAS NMR) spectroscopy. Sorption isotherms of NP111 on HAs were described by a linear model. The organic carbon-normalized sorption coefficient ( ) ranged from 2.3 × 10 to 1.5 × 10 L kg . Interestingly, a clear correlation between value and alkyl C content was observed, indicating that the aliphaticity of HAs markedly dominates the sorption of NP111. These new mechanistic insights about the NP111 sorption indicate that the fate of nonylphenols in soil or sediment depends not only on the content of HA, but also on its structural composition.
    Keywords: Branched Nonylphenol ; Sorption ; Humic Acids ; NMR ; Aliphaticity ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Plant and Soil, 2014, Vol.384(1), pp.93-112
    Description: Aims A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves. Methods Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al. 2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H+C). Split-root experiments were simulated by varying transpiration demands and irrigation placement. Results While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H+C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction. Conclusions Although simulations with H+C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone. Keywords Soil-root modeling * R-SWMS * Hormonal Signaling * Stomatal conductance * Partial rootzone drying
    Keywords: Soil-root modelling ; R-SWMS ; Hormonal signalling ; Stomatal conductance ; Partial rootzone drying
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Journal of Hydrology, Feb 25, 2013, Vol.481, p.106(13)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.jhydrol.2012.12.024 Byline: Gonzalo Martinez (a)(b), Yakov A. Pachepsky (b), Harry Vereecken (c), Horst Hardelauf (c), Michael Herbst (c), Karl Vanderlinden (d) Keywords: Soil water content; Temporal stability; Simulations; Local controls; Saturated hydraulic conductivity Abstract: a* We simulated soil water flow in bare and grassed soil columns of three textures. a* Typical features of soil water temporal stability were recovered in simulations. a* Simulated duration and season affected the temporal stability of soil water contents. a* Spatio-temporal variations in soil water correlated with soil hydraulic conductivity. Author Affiliation: (a) Dept. of Agronomy, University of Cordoba, 14071 Cordoba, Spain (b) USDA-ARS- Environmental Microbial and Food Safety Lab, Beltsville, MD 20705, USA (c) Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Julich GmbH, 52428 Julich, Germany (d) IFAPA, Centro Las Torres-Tomejil, 41200 Alcala del Rio, Spain Article History: Received 15 December 2011; Revised 14 December 2012; Accepted 17 December 2012 Article Note: (miscellaneous) This manuscript was handled by Corrado Corradini, Editor-in-Chief, with the assistance of Axel Bronstert, Associate Editor
    Keywords: Hydrogeology -- Models ; Food Safety -- Models ; Soil Moisture -- Models ; Hydraulic Flow -- Models ; Water -- Models
    ISSN: 0022-1694
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages