Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Article  (22)
  • Vogel, Hj  (22)
  • OneFile (GALE)  (22)
Type of Medium
  • Article  (22)
Language
Year
  • 1
    Language: English
    In: PloS one, 2016, Vol.11(7), pp.e0159948
    Description: Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.
    Keywords: X-Ray Microtomography ; Soil -- Chemistry
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Frontiers in microbiology, 2018, Vol.9, pp.1929
    Description: Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
    Keywords: Nanosims Imaging ; X-Ray Computed ; Biodiversity ; Single-Cell Genomics ; Soil Microbiology ; Tomography ; Upscaling
    ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Science of the Total Environment, 15 December 2018, Vol.645, pp.192-204
    Description: Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.
    Keywords: Heteroaggregation ; Nanoparticle Transformation ; Breakthrough ; Mobility ; Reversibility ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Plant and Soil, 2010, Vol.332(1), pp.163-176
    Description: Water flow from soil to plants depends on the properties of the soil next to roots, the rhizosphere. Although several studies showed that the rhizosphere has different properties than the bulk soil, effects of the rhizosphere on root water uptake are commonly neglected. To investigate the rhizosphere’s properties we used neutron radiography to image water content distributions in soil samples planted with lupins during drying and subsequent rewetting. During drying, the water content in the rhizosphere was 0.05 larger than in the bulk soil. Immediately after rewetting, the picture reversed and the rhizosphere remained markedly dry. During the following days the water content of the rhizosphere increased and after 60 h it exceeded that of the bulk soil. The rhizosphere’s thickness was approximately 1.5 mm. Based on the observed dynamics, we derived the distinct, hysteretic and time-dependent water retention curve of the rhizosphere. Our hypothesis is that the rhizosphere’s water retention curve was determined by mucilage exuded by roots. The rhizosphere properties reduce water depletion around roots and weaken the drop of water potential towards roots, therefore favoring water uptake under dry conditions, as demonstrated by means of analytical calculation of water flow to a single root.
    Keywords: Root water uptake ; Water retention curve ; Rhizosphere ; Neutron radiography ; Mucilage ; Hysteresis
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Transport in Porous Media, 2016, Vol.112(1), pp.207-227
    Description: According to experimental observations, capillary trapping is strongly dependent on the roughness of the pore–solid interface. We performed imbibition experiments in the range of capillary numbers ( Ca ) from $$10^{-6}$$ 10 - 6 to $$5\times 10^{-5}$$ 5 × 10 - 5 using 2D-micromodels, which exhibit a rough surface. The microstructure comprises a double-porosity structure with pronounced macropores. The dynamics of precursor thin-film flow and its importance for capillary trapping are studied. The experimental data for thin-film flow advancement show a square-root time dependence. Based on the experimental data, we conducted inverse modeling to investigate the influence of surface roughness on the dynamic contact angle of precursor thin-film flow. Our experimental results show that trapped gas saturation decreases logarithmically with an increasing capillary number. Cluster analysis shows that the morphology and number of trapped clusters change with capillary number. We demonstrate that capillary trapping shows significant differences for vertical flow and horizontal flow. We found that our experimental results agree with theoretical results of percolation theory for $$Ca =10^{-6}$$ C a = 10 - 6 : (i) a universal power-like cluster size distribution, (ii) the linear surface–volume relationship of trapped clusters, and (iii) the existence of the cutoff correlation length for the maximal cluster height. The good agreement is a strong argument that the experimental cluster size distribution is caused by a percolation-like trapping process (ordinary percolation). For the first time, it is demonstrated experimentally that the transition zone model proposed by Wilkinson (Phys Rev A 30:520–531, 1984) can be applied to 2D-micromodels, if bicontinuity is generalized such that it holds for the thin-film water phase and the bulk gas phase.
    Keywords: 2D-micromodel with rough surface ; Precursor thin-film flow ; Snap-off trapping ; Universal power law ; Ordinary bond percolation
    ISSN: 0169-3913
    E-ISSN: 1573-1634
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Nature, 22 February 2018, Vol.554(7693), pp.423
    Keywords: Soil ; Plant Roots -- Chemistry
    ISSN: 00280836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Computers and Geosciences, 2010, Vol.36(10), pp.1246-1251
    Description: For many analyses, grey scale images from X-ray tomography and other sources need to be segmented into objects and background which often is a difficult task and afflicted by an arbitrary and subjective choice of threshold values. This is especially true if the volume fraction of objects is small and the histogram becomes unimodal. Bi-level segmentation based on region growing is a promising approach to cope with the fuzzy transition zone between object and background due to the partial volume effect, but until now there is no method to properly determine the required thresholds in case of unimodality. We propose an automatic and robust technique for threshold selection based on edge detection. The method uses gradient masks which are defined as regions of interest for the determination of threshold values. Its robustness is analysed by a systematic performance test and finally demonstrated for the segmentation of pores in different soils using images from X-ray tomography.
    Keywords: Segmentation ; Thresholding ; Edge Detection ; Region Growing ; Tomography ; Geology
    ISSN: 0098-3004
    E-ISSN: 1873-7803
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Frontiers in Environmental Science, 01 October 2019, Vol.7
    Description: Soils play a key role for the functioning of terrestrial ecosystems. Thus, soils are essential for human society not only because they form the basis for the production of food. This has long been recognized, and during the last three decades...
    Keywords: Soil Functions ; Ecosystem Services ; Soil Indicators ; Modeling Soil Functions ; Soil Evaluation ; Environmental Sciences
    E-ISSN: 2296-665X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Land Degradation & Development, September 2018, Vol.29(9), pp.3112-3126
    Description: Bioeconomy strategies have been adopted in many countries around the world. Their sustainable implementation requires a management of soils that maintains soil functions and avoids land degradation. Only then, ecosystem services can be maintained and resources used efficiently. We present an analytical framework for impact assessment that links policy and technology driving forces for soil management decisions to soil processes, soil functional changes, and their impacts on ecosystem services and resource use efficiency, both being targets that have been set by society and are anchored in bioeconomy policy strategies and sustainable development goals. Although the resource use efficiency concept has a long‐term tradition, most studies of agricultural management do not address the role of soils in their efficiency assessment. The concept of ecosystem services has received increasing attention over the last years; however, its link to soil functions and soil management practices is still not well established. This study is the first to conceptually link the socioeconomic processes of external drivers for soil management with the natural processes of soil functions and connect them back to impacts on the social system. Application of the framework helps strengthen the science‐policy interface and to systemically assess and compare the opportunities and threats of soil management practices from the perspective of goals set by society at different spatial and temporal scales. Insights gained in this way can be applied in stakeholder decision‐making processes and used to inform the design of governance instruments aimed at sustainable soil management within a bioeconomy.
    Keywords: Bioeconomy ; Ecosystem Services ; Impact Assessment ; Resource Use Efficiency ; Soil Management Practices ; Sustainable Development Goals
    ISSN: 1085-3278
    E-ISSN: 1099-145X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Soil & Tillage Research, January 2018, Vol.175, pp.205-216
    Description: In recent years, there has been an increased application of conservation-oriented tillage techniques, where instead of being turned the soil is only loosened or not tilled at all. Strip tillage, a special form of conservation tillage, results in small-scale structural differences, since tillage is performed only within the seed row, while the soil between seed rows is not tilled. However, tillage always impacts upon physical soil properties and processes. A combined application of conventional soil mechanical methods and X-ray computed tomography (X-ray CT) is employed here in order to investigate small-scale structural differences in a chernozem (texture 0–30 cm: silt loam) located in central Germany under strip tillage (within and between seed rows) compared to no tillage and mulch tillage. Apart from recording changes over time (years: 2012, 2014, 2015) to dry bulk density and saturated conductivity at soil depths 2–8 and 12–18 cm, stress-strain tests were conducted to map mechanical behaviour for a load range of 5–550 kPa at a soil depth of 12–18 cm (year 2015). Mechanical precompression stress was determined from the stress-dry bulk density curves. In addition, computed tomography scans were created followed by quantitative image analysis of the morphometric parameters mean macropore diameter, macroporosity, connectivity and anisotropy of the same soil samples. For strip tillage between seed rows and no tillage, a significant increase in dry bulk density was observed over time compared to strip tillage within the seed row and mulch tillage. This was more pronounced at a soil depth of 2–8 cm than at 12–18 cm. Despite higher dry bulk density, strip tillage between the seed row displayed also an increasing saturated conductivity compared to strip tillage within the seed row and mulch tillage. The computed tomography scans showed that the macropores became more compressed and soil aggregates were pushed together as mechanical stress increased, with the aggregate arrangement being transformed down into a coherent soil mass. The soil mechanical and morphometric parameters supported each other in terms of what they revealed about the mechanical properties of the soil structures. For instance, in the strip tillage between seed rows and no tillage treatments, the lack of soil tillage not only resulted in higher dry bulk densities, but also higher aggregate densities, mechanical precompression stress values, mean macropore diameters as well as lower macroporosity and connectivity values compared to mulch tillage and strip tillage within the seed row. The computed tomography parameters are therefore highly suitable for providing Supplementary information about the compaction process. Overall, this study showed that strip tillage combines the advantages of no tillage and a deeper, soil conservation-oriented primary tillage because, on a small scale, it creates two distinct soil structures which are beneficial in terms of optimal plant growth as well as mechanical resistance by driving over the soil.
    Keywords: Pre-Compression Stress ; Dry Bulk Density ; Aggregate Density ; Image Analysis ; Soil Compaction ; Agriculture
    ISSN: 0167-1987
    E-ISSN: 1879-3444
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages