Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Environmental science & technology, 16 April 2019, Vol.53(8), pp.4140-4149
    Description: The supplementation of Zn to farm animal feed and the excretion via manure leads to an unintended Zn input to agricultural systems, which might compromise the long-term soil fertility. The Zn fluxes at three grassland sites in Switzerland were determined by a detailed analysis of relevant inputs (atmospheric deposition, manure, weathering) and outputs (seepage water, biomass harvest) during one hydrological year. The most important Zn input occurred through animal manure (1076-1857 g ha yr) and Zn mass balances revealed net Zn accumulations (456-1478 g ha yr). We used Zn stable isotopes to assess the importance of anthropogenic impacts and natural long-term processes on the Zn distribution in soils. Soil-plant cycling and parent material weathering were identified as the most important processes, over the entire period of soil formation (13 700 years), whereas the soil pH strongly affected the direction of Zn isotopic fractionation. Recent anthropogenic inputs of Zn only had a smaller influence compared to the natural processes of the past 13 700 years. However, this will probably change in the future, as Zn stocks in the 0-20 cm layer will increase by 22-68% in the next 100 years, if Zn inputs remain on the same level as today.
    Keywords: Soil ; Soil Pollutants
    ISSN: 0013936X
    E-ISSN: 1520-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: New Phytologist, July 2018, Vol.219(1), pp.195-205
    Description: Remobilization of zinc (Zn) from shoot to grain contributes significantly to Zn grain concentrations and thereby to food quality. On the other hand, strong accumulation of cadmium (Cd) in grain is detrimental for food quality. Zinc concentrations and isotope ratios were measured in wheat shoots (Triticum aestivum) at different growth stages to elucidate Zn pathways and processes in the shoot during grain filling. Zinc mass significantly decreased while heavy Zn isotopes accumulated in straw during grain filling (Δ66Znfull maturity–flowering = 0.21–0.31‰). Three quarters of the Zn mass in the shoot moved to the grains, which were enriched in light Zn isotopes relative to the straw (Δ66Zngrain–straw −0.21 to −0.31‰). Light Zn isotopes accumulated in phloem sinks while heavy isotopes were retained in phloem sources likely because of apoplastic retention and compartmentalization. Unlike for Zn, an accumulation of heavy Cd isotopes in grains has previously been shown. The opposing isotope fractionation of Zn and Cd might be caused by distinct affinities of Zn and Cd to oxygen, nitrogen, and sulfur ligands. Thus, combined Zn and Cd isotope analysis provides a novel tool to study biochemical processes that separate these elements in plants.
    Keywords: Cadmium Cd ; Element Speciation ; Isotope Ratios ; Remobilization ; Wheat ; Zinc Zn
    ISSN: 0028-646X
    E-ISSN: 1469-8137
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Environmental science & technology, 20 February 2018, Vol.52(4), pp.1919-1928
    Description: The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha yr) and manure (0.20 to 0.91 g Cd ha yr). Mass balances revealed net Cd losses for cultivation of wheat (-0.01 to -0.49 g Cd ha yr) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha yr). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δCd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (-0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.
    Keywords: Soil ; Soil Pollutants
    ISSN: 0013936X
    E-ISSN: 1520-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental science & technology, 06 September 2016, Vol.50(17), pp.9223-31
    Description: Analyses of stable metal isotope ratios constitute a novel tool in order to improve our understanding of biogeochemical processes in soil-plant systems. In this study, we used such measurements to assess Cd uptake and transport in wheat grown on three agricultural soils under controlled conditions. Isotope ratios of Cd were determined in the bulk C and A horizons, in the Ca(NO3)2-extractable Cd soil pool, and in roots, straw, and grains. The Ca(NO3)2-extractable Cd was isotopically heavier than the Cd in the bulk A horizon (Δ(114/110)Cdextract-Ahorizon = 0.16 to 0.45‰). The wheat plants were slightly enriched in light isotopes relative to the Ca(NO3)2-extractable Cd or showed no significant difference (Δ(114/110)Cdwheat-extract = -0.21 to 0.03‰). Among the plant parts, Cd isotopes were markedly fractionated: straw was isotopically heavier than roots (Δ(114/110)Cdstraw-root = 0.21 to 0.41‰), and grains were heavier than straw (Δ(114/110)Cdgrain-straw = 0.10 to 0.51‰). We suggest that the enrichment of heavy isotopes in the wheat grains was caused by mechanisms avoiding the accumulation of Cd in grains, such as the chelation of light Cd isotopes by thiol-containing peptides in roots and straw. These results demonstrate that Cd isotopes are significantly and systematically fractionated in soil-wheat systems, and the fractionation patterns provide information on the biogeochemical processes in these systems.
    Keywords: Cadmium ; Soil
    ISSN: 0013936X
    E-ISSN: 1520-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science of the Total Environment, 15 January 2019, Vol.648, pp.779-786
    Description: Applications of mineral phosphorus (P) fertilizer can lead to cadmium (Cd) accumulation in soils and can increase Cd concentrations in edible crop parts. To determine the fate of freshly applied Cd, a Cd source tracing experiment was conducted in three soil-fertilizer-wheat systems by using a mineral P fertilizer labeled with the radio isotope Cd and by exploiting natural differences in Cd stable isotope compositions (δ Cd). Source tracing with stable isotopes overestimated the proportion of Cd in plants derived from the P fertilizer, because the isotope ratios of the sources were not sufficiently distinct from those of the soils. Despite indistinguishable extractable Cd pools between control and treatments, the addition of P fertilizer resulted in a more negative apparent isotope fractionation between soil and wheat. Overall, the radio isotope approach provided more robust results and revealed that 6.5 to 15% of the Cd in the shoot derived from the fertilizer. From the introduced Cd, a maximum of 2.2% reached the wheat shoots, whilst 97.8% remained in the roots and soils. The low recoveries of the fertilizer derived Cd suggest that continuous P fertilizer application in the past decades can lead to a build-up of a residual Cd pool in soils.
    Keywords: Cadmium ; Mineral P Fertilizer ; Radio Isotopes ; Source Tracing ; Stable Isotopes ; Wheat ; Pot Experiment ; Environmental Sciences ; Biology ; Public Health
    ISBN: 4070200262
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental Pollution, January 2019, Vol.244, pp.834-844
    Description: Cd in soils might be taken up by plants, enter the food chain and endanger human health. This study investigates the isotopic fractionation of major processes during the Cd transfer from soils to cereal grains. Thereto, soil, soil solution, wheat and barley plants (roots, straw and grains) were sampled in the field at three study sites during two vegetation periods. Cd concentrations and δ Cd values were determined in all samples. The composition of the soil solution was analyzed and the speciation of the dissolved Cd was modelled. Isotopic fractionation between soils and soil solutions (Δ Cd  = −0.61 to −0.68‰) was nearly constant among the three soils. Cd isotope compositions in plants were heavier than in soils (Δ Cd  = −0.55 to −0.31‰) but lighter than in soil solutions (Δ Cd  = 0.06–0.36‰) and these differences correlated with Cd plant-uptake rates. In a conceptual model, desorption from soil, soil solution speciation, adsorption on root surfaces, diffusion, and plant uptake were identified as the responsible processes for the Cd isotope fractionation between soil, soil solution and plants whereas the first two processes dominated over the last three processes. Within plants, compartments with lower Cd concentrations were enriched in light isotopes which might be a consequence of Cd retention mechanisms, following a Rayleigh fractionation, in which barley cultivars were more efficient than wheat cultivars. The isotopic fractionation between soil and soil solution is mainly driven by shorter bond length of aqueous than sorped Cd, while the fractionation between soil and plant depend on pool size effects and the plant internal fractionation is controlled by Cd retention mechanisms which are more efficient in barley than wheat plants.
    Keywords: Cadmium ; Cereal ; Plant Metal Uptake ; Soil ; Soil Solution ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
  • 8
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages