Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Plant and Soil, 2010, Vol.332(1), pp.163-176
    Description: Water flow from soil to plants depends on the properties of the soil next to roots, the rhizosphere. Although several studies showed that the rhizosphere has different properties than the bulk soil, effects of the rhizosphere on root water uptake are commonly neglected. To investigate the rhizosphere’s properties we used neutron radiography to image water content distributions in soil samples planted with lupins during drying and subsequent rewetting. During drying, the water content in the rhizosphere was 0.05 larger than in the bulk soil. Immediately after rewetting, the picture reversed and the rhizosphere remained markedly dry. During the following days the water content of the rhizosphere increased and after 60 h it exceeded that of the bulk soil. The rhizosphere’s thickness was approximately 1.5 mm. Based on the observed dynamics, we derived the distinct, hysteretic and time-dependent water retention curve of the rhizosphere. Our hypothesis is that the rhizosphere’s water retention curve was determined by mucilage exuded by roots. The rhizosphere properties reduce water depletion around roots and weaken the drop of water potential towards roots, therefore favoring water uptake under dry conditions, as demonstrated by means of analytical calculation of water flow to a single root.
    Keywords: Root water uptake ; Water retention curve ; Rhizosphere ; Neutron radiography ; Mucilage ; Hysteresis
    ISSN: 0032-079X
    E-ISSN: 1573-5036
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Environmental Earth Sciences, 2013, Vol.69(2), pp.317-333
    Description: Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/ ) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.
    Keywords: Water and solute fluxes ; Water quality ; Catchments ; Land-surface atmosphere exchange ; Processes and feedbacks ; Modeling ; Monitoring
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Vadose Zone Journal, 2009, Vol.8(3), p.805
    Description: It has been speculated that during periods of water deficit, roots may shrink and lose contact with the soil, with a consequent reduction in root water uptake. Due to the opaque nature of soil, however, this process has never been observed in situ for living plants. Through x-ray tomography and image analysis, we have demonstrated the formation and dynamics of air gaps around roots. The high spatial resolution required to image the soil–root gaps was achieved by combining tomography of the entire sample (field of view of 16 by 16 cm, pixel side 0.32 mm) with local tomography of the soil region around the roots (field of view of 5 by 5 cm, pixel side 0.09 mm). For a sandy soil, we found that when the soil dries to a water content of 0.025 m3 m–3, gaps occur around the taproot and the lateral roots of lupin (Lupinus albus L.). Gaps were larger for the taproot than the laterals and were caused primarily by root shrinkage rather than by soil shrinkage. When the soil was irrigated again, the roots swelled, partially refilling the gaps; however, large gaps persisted in the more proximal, older part of the taproot. Gaps are expected to reduce water transfers between soil and roots. Opening and closing of gaps may help plants to prevent water loss when the soil dries, and to restore the soil–root continuity when water becomes available. The persistence of gaps in the more proximal parts is one reason why roots preferentially take up water from their more distal parts. ; Includes references ; p. 805-809.
    Keywords: Soil Water Content ; Roots ; Soil-Plant Interactions ; Shrinkage ; Plants ; Translocation (Plant Physiology) ; Lupinus Albus ; Forage Legumes ; Spatial Variation ; Drought ; Water Stress ; Sandy Soils ; Water Uptake ; Computed Tomography ; Forage Crops ; Image Analysis ; Taproots;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages