Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Water Resources Research, March 2007, Vol.43(3), pp.n/a-n/a
    Description: Large‐scale models of transient flow processes in the unsaturated zone require, in general, upscaling of the flow problem in order to capture the impact of heterogeneities on a small scale, which cannot be resolved by the model. Effective parameters for the upscaled models are often derived from second‐order stochastic properties of the parameter fields. Such properties are good quantifications for parameter fields, which are multi‐Gaussian. However, the structure of soil does rarely resemble these kinds of fields. The non‐multi‐Gaussian field properties can lead to strong discrepancies between predictions of upscaled models and the averaged real flow process. In particular, the connected paths of parameter ranges of the medium are important features, which are usually not taken into account in stochastic approaches. They are determined here by the Euler number of one‐cut indicator fields. Methods to predict effective parameters are needed that incorporate this type of information. We discuss different simple and fast approaches for estimating the effective parameter for upscaled models of slow transient flow processes in the unsaturated zone, where connected paths of the material may be taken into account. Upscaled models are derived with the assumption of capillary equilibrium. The effective parameters are calculated using effective media approaches. We also discuss the limits of the applicability of these methods.
    Keywords: Richards Equation ; Unsaturated Flow ; Upscaling
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Water Resources Research, May 2006, Vol.42(5), pp.n/a-n/a
    Description: This paper presents a vision that advocates hydropedology as an advantageous integration of pedology and hydrology for studying the intimate relationships between soil, landscape, and hydrology. Landscape water flux is suggested as a unifying precept for hydropedology, through which pedologic and hydrologic expertise can be better integrated. Landscape water flux here encompasses the source, storage, flux, pathway, residence time, availability, and spatiotemporal distribution of water in the root and deep vadose zones within the landscape. After illustrating multiple knowledge gaps that can be addressed by the synergistic integration of pedology and hydrology, we suggest five scientific hypotheses that are critical to advancing hydropedology and enhancing the prediction of landscape water flux. We then present interlinked strategies for achieving the stated vision. It is our hope that by working together, hydrologists and pedologists, along with scientists in related disciplines, can better guide data acquisition, knowledge integration, and model‐based prediction so as to advance the hydrologic sciences in the next decade and beyond.
    Keywords: Catchment Hydrology ; Landscape Processes ; Scale ; Soil Hydrology ; Soil Physics ; Vadose Zone
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages