Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Article  (28)
  • Vogel, J.  (28)
  • AGRIS (United Nations, Food and Agriculture Organization)  (28)
Type of Medium
  • Article  (28)
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 27 March 2012, Vol.109(13), pp.E757-64
    Description: SgrS RNA is a model for the large class of Hfq-associated small RNAs that act to posttranscriptionally regulate bacterial mRNAs. The function of SgrS is well-characterized in nonpathogenic Escherichia coli, where it was originally shown to counteract glucose-phosphate stress by acting as a repressor of the ptsG mRNA, which encodes the major glucose transporter. We have discovered additional SgrS targets in Salmonella Typhimurium, a pathogen related to E. coli that recently acquired one-quarter of all genes by horizontal gene transfer. We show that the conserved short seed region of SgrS that recognizes ptsG was recruited to target the Salmonella-specific sopD mRNA of a secreted virulence protein. The SgrS-sopD interaction is exceptionally selective; we find that sopD2 mRNA, whose gene arose from sopD duplication during Salmonella evolution, is deaf to SgrS because of a nonproductive G-U pair in the potential SgrS-sopD2 RNA duplex vs. G-C in SgrS-sopD. In other words, SgrS discriminates the two virulence factor mRNAs at the level of a single hydrogen bond. Our study suggests that bacterial pathogens use their large suites of conserved Hfq-associated regulators to integrate horizontally acquired genes into existing posttranscriptional networks, just as conserved transcription factors are recruited to tame foreign genes at the DNA level. The results graphically illustrate the importance of the seed regions of bacterial small RNAs to select new targets with high fidelity and suggest that target predictions must consider all or none decisions by individual seed nucleotides.
    Keywords: Phylogeny ; Base Pairing -- Genetics ; Gene Transfer, Horizontal -- Genetics ; RNA, Bacterial -- Genetics ; Salmonella -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 10 September 2013, Vol.110(37), pp.E3487-96
    Description: Small RNAs (sRNAs) constitute a large and heterogeneous class of bacterial gene expression regulators. Much like eukaryotic microRNAs, these sRNAs typically target multiple mRNAs through short seed pairing, thereby acting as global posttranscriptional regulators. In some bacteria, evidence for hundreds to possibly more than 1,000 different sRNAs has been obtained by transcriptome sequencing. However, the experimental identification of possible targets and, therefore, their confirmation as functional regulators of gene expression has remained laborious. Here, we present a strategy that integrates phylogenetic information to predict sRNA targets at the genomic scale and reconstructs regulatory networks upon functional enrichment and network analysis (CopraRNA, for Comparative Prediction Algorithm for sRNA Targets). Furthermore, CopraRNA precisely predicts the sRNA domains for target recognition and interaction. When applied to several model sRNAs, CopraRNA revealed additional targets and functions for the sRNAs CyaR, FnrS, RybB, RyhB, SgrS, and Spot42. Moreover, the mRNAs gdhA, lrp, marA, nagZ, ptsI, sdhA, and yobF-cspC were suggested as regulatory hubs targeted by up to seven different sRNAs. The verification of many previously undetected targets by CopraRNA, even for extensively investigated sRNAs, demonstrates its advantages and shows that CopraRNA-based analyses can compete with experimental target prediction approaches. A Web interface allows high-confidence target prediction and efficient classification of bacterial sRNAs.
    Keywords: E. Coli ; RNA–RNA Interaction ; Regulatory RNA ; RNA, Bacterial -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Cell, 11 April 2013, Vol.153(2), pp.426-437
    Description: Glucose homeostasis is strictly controlled in all domains of life. Bacteria that are unable to balance intracellular sugar levels and deal with potentially toxic phosphosugars cease growth and risk being outcompeted. Here, we identify the conserved haloacid dehalogenase (HAD)-like enzyme YigL as the previously hypothesized phosphatase for detoxification of phosphosugars and reveal that its synthesis is activated by an Hfq-dependent small RNA in . We show that the glucose-6-P-responsive small RNA SgrS activates YigL synthesis in a translation-independent fashion by the selective stabilization of a decay intermediate of the dicistronic messenger RNA (mRNA). Intriguingly, the major endoribonuclease RNase E, previously known to function together with small RNAs to degrade mRNA targets, is also essential for this process of mRNA activation. The exploitation of and targeted interference with regular RNA turnover described here may constitute a general route for small RNAs to rapidly activate both coding and noncoding genes. ► The bacterial small RNA SgrS posttranscriptionally activates the synthesis of YigL ► YigL is the previously hypothesized phosphatase that prevents phosphosugar toxicity ► SgrS activates yigL by a translation-independent mRNA-stabilization mechanism ► SgrS stabilizes an intermediate in the yigL mRNA decay pathway YigL, a long-sought bacterial phosphatase, regulates glucose-6-phosphate levels. A small regulatory RNA upregulates YigL synthesis by base pairing with the coding sequence of the preceding gene to interfere with endonucleolytic yigL mRNA decay.
    Keywords: Biology
    ISSN: 0092-8674
    E-ISSN: 1097-4172
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Nucleic acids research, October 2010, Vol.38(19), pp.6637-51
    Description: Post-transcriptional regulatory mechanisms are widespread in bacteria. Interestingly, current published data hint that some of these mechanisms may be non-random with respect to their phylogenetic distribution. Although small, trans-acting regulatory RNAs commonly occur in bacterial genomes, they have been better characterized in Gram-negative bacteria, leaving the impression that they may be less important for Firmicutes. It has been presumed that Gram-positive bacteria, in particular the Firmicutes, are likely to utilize cis-acting regulatory RNAs located within the 5' mRNA leader region more often than trans-acting regulatory RNAs. In this analysis we catalog, by a deep sequencing-based approach, both classes of regulatory RNA candidates for Bacillus subtilis, the model microorganism for Firmicutes. We successfully recover most of the known small RNA regulators while also identifying a greater number of new candidate RNAs. We anticipate these data to be a broadly useful resource for analysis of post-transcriptional regulatory strategies in B. subtilis and other Firmicutes.
    Keywords: Bacillus Subtilis -- Genetics ; RNA, Small Untranslated -- Analysis
    ISSN: 03051048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Nucleic acids research, January 2010, Vol.38(3), pp.868-77
    Description: Chlamydia trachomatis is an obligate intracellular pathogenic bacterium that has been refractory to genetic manipulations. Although the genomes of several strains have been sequenced, very little information is available on the gene structure of these bacteria. We used deep sequencing to define the transcriptome of purified elementary bodies (EB) and reticulate bodies (RB) of C. trachomatis L2b, respectively. Using an RNA-seq approach, we have mapped 363 transcriptional start sites (TSS) of annotated genes. Semi-quantitative analysis of mapped cDNA reads revealed differences in the RNA levels of 84 genes isolated from EB and RB, respectively. We have identified and in part confirmed 42 genome- and 1 plasmid-derived novel non-coding RNAs. The genome encoded non-coding RNA, ctrR0332 was one of the most abundantly and differentially expressed RNA in EB and RB, implying an important role in the developmental cycle of C. trachomatis. The detailed map of TSS in a thus far unprecedented resolution as a complement to the genome sequence will help to understand the organization, control and function of genes of this important pathogen.
    Keywords: Chlamydia Trachomatis -- Genetics ; RNA, Bacterial -- Genetics ; RNA, Untranslated -- Genetics
    ISSN: 03051048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecular Microbiology, September 2009, Vol.73(5), pp.737-741
    Description: Small regulatory RNAs (sRNAs) are well known to command bacterial protein synthesis by modulating the translation and decay of target mRNAs. Most sRNAs are specifically regulated by a cognate transcription factor under certain growth or stress conditions. Investigations of the conserved Hfq‐dependent MicM sRNA in (article by Poul Valentin‐Hansen and colleagues in this issue of ) and in have unravelled a novel type of gene regulation in which the chitobiose operon mRNA acts as an RNA trap to degrade the constitutively expressed MicM sRNA, thereby alleviating MicM‐mediated repression of the synthesis of the YbfM porin that is required for chitosugar uptake. The results suggest that ‘target’ mRNAs might be both prey and also predators of sRNAs.
    Keywords: Protein Synthesis ; Messenger Rna;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 15 May 2012, Vol.109(20), pp.E1277-86
    Description: More than 50 y of research have provided great insight into the physiology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium), but important gaps in our knowledge remain. It is clear that a precise choreography of gene expression is required for Salmonella infection, but basic genetic information such as the global locations of transcription start sites (TSSs) has been lacking. We combined three RNA-sequencing techniques and two sequencing platforms to generate a robust picture of transcription in S. Typhimurium. Differential RNA sequencing identified 1,873 TSSs on the chromosome of S. Typhimurium SL1344 and 13% of these TSSs initiated antisense transcripts. Unique findings include the TSSs of the virulence regulators phoP, slyA, and invF. Chromatin immunoprecipitation revealed that RNA polymerase was bound to 70% of the TSSs, and two-thirds of these TSSs were associated with σ(70) (including phoP, slyA, and invF) from which we identified the -10 and -35 motifs of σ(70)-dependent S. Typhimurium gene promoters. Overall, we corrected the location of important genes and discovered 18 times more promoters than identified previously. S. Typhimurium expresses 140 small regulatory RNAs (sRNAs) at early stationary phase, including 60 newly identified sRNAs. Almost half of the experimentally verified sRNAs were found to be unique to the Salmonella genus, and 〈20% were found throughout the Enterobacteriaceae. This description of the transcriptional map of SL1344 advances our understanding of S. Typhimurium, arguably the most important bacterial infection model.
    Keywords: Gene Expression Regulation, Bacterial -- Genetics ; RNA, Small Untranslated -- Genetics ; Regulatory Sequences, Ribonucleic Acid -- Genetics ; Salmonella Typhimurium -- Genetics ; Transcription, Genetic -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Microbiology, January 2009, Vol.71(1), pp.1-11
    Description: species are enterobacterial pathogens that have been exceptionally well investigated with respect to virulence mechanisms, microbial pathogenesis, genome evolution and many fundamental pathways of gene expression and metabolism. While these studies have traditionally focused on protein functions, has also become a model organism for RNA‐mediated regulation. The present review is dedicated to the non‐coding RNA world of : it covers small RNAs (sRNAs) that act as post‐transcriptional regulators of gene expression, novel Salmonella ‐regulatory RNA elements that sense metabolite and metal ion concentrations (or temperature), and globally acting RNA‐binding proteins such as CsrA or Hfq (inactivation of which cause drastic phenotypes and virulence defects). Owing to mosaic genome structure, some of the sRNAs are widely conserved in bacteria whereas others are very specific to species. Intriguingly, sRNAs of either type (CsrB/C, InvR, SgrS) facilitate cross‐talk between the core genome and its laterally acquired virulence regions. Work in also identified physiological functions (and mechanisms thereof) of RNA that had remained unknown in , and pioneered the use of high‐throughput sequencing technology to identify the sRNA and mRNA targets of bacterial RNA‐binding proteins.
    Keywords: Metabolites ; Proteins ; Messenger Rna ; Salmonella ; Gene Expression;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Molecular Cell, 10 October 2013, Vol.52(1), pp.4-7
    Description: Three papers in this issue of report on the structure and functional activity of type III CRISPR-Cas effector complexes, revealing novel and conserved features of the ribonucleoprotein particles that underlie prokaryotic genome defense. The new structures suggest that type I and type III complexes follow the same architectural principles and are most likely descendants of a common ancestor, the differences in RNA and protein sequences and structure of individual components notwithstanding.
    Keywords: Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Molecular Cell, 2011, Vol.41(3), pp.245-246
    Description: Spot42 is a paradigm for small RNAs that fine-tune carbon metabolism. In this issue of , reveal that this conserved RNA acts through a multioutput feedforward loop to modulate the global dynamics of sugar consumption.
    Keywords: Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages