Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry
  • AGRIS (United Nations, Food and Agriculture Organization)  (9)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Chemosphere, July 2013, Vol.92(5), pp.483-489
    Description: ► The invasive aquatic amphipod is more tolerant to lambda-cyhalothrin than the native one. ► Predation success on Baetis nymphs is substantially higher for than ► may contribute substantially to leaf litter decomposition. Invasive species are considered as one of the major threats for biodiversity worldwide. The Ponto-Caspian species , for instance, spread throughout continental Europe and was recorded for the first time also within Lake Constance in 2003. Although is a highly competitive species it was not capable of replacing the native completely in this ecosystem, especially in the riparian zones of the highly agriculturally used island “Reichenau”. As differences in pesticide sensitivity between both amphipod species may explain their distribution, the present study assessed the implication of the highly toxic pyrethroid lambda-cyhalothrin, which is authorized for application in the Lake Constance region, assuming the invasive species being more sensitive than the native one. However, both the feeding activity bioassays, which measured the leaf consumption over 7 d ( = 20), as well as the predation bioassay, which measured the predation rate upon nymphs in concert with the feeding activity on leaf material over 96 h ( = 13), revealed an up to 5-fold higher tolerance of towards lambda-cyhalothrin. These results suggest the investigated insecticide not being the trigger for the observed distribution pattern of both amphipod species. Hence, other factors like the diversity of habitat structures or the levels of ammonia may have facilitated the coexistence. Nevertheless, the present study uncovered a high leaf-shredding efficacy of the invasive species suggesting that its role in the leaf decomposition process may have been underestimated in the past.
    Keywords: Functional Feeding Group ; Insecticide ; Leaf Litter Decomposition ; Ecosystem Function ; Predator–Prey Interaction ; Freshwater Biodiversity ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Chemosphere, 2011, Vol.82(3), pp.355-361
    Description: Advanced oxidation technologies such as ozonation have been proposed to improve removal efficiency of micropollutants during wastewater treatment. In a meta-analysis of peer-reviewed literature, we found no ecotoxicological effects of wastewater ozonation on invertebrates ( = 82), but significant adverse effects on bacteria ( = 24) and fish ( = 5). As information on functional endpoints or trophic interactions is lacking, we applied a bioassay relating to leaf litter decomposition to fill this gap. Leaf discs exposed to ozone-treated wastewater with a high (1.04 mg O (mg DOC) , = 49) ozone concentration were significantly preferred by an aquatic detritivore, , over discs conditioned in wastewater not treated with ozone. This effect might have been mediated by reduced bacterial and elevated fungal biomass, and appears to be the first demonstration of wastewater ozonation impacts on invertebrates and an associated ecosystem process. In accordance with the food-choice trials, chemical analyses revealed significantly decreased concentrations of organic micropollutants in wastewater treated with ozone at high concentrations. Thus, food-choice trials as applied here hold promise to assess environmental effects of advanced oxidation technologies in wastewater treatment and appear to be a valuable complement to the ecotoxicological toolbox in general.
    Keywords: Food Choice ; Indirect Effects ; Gammaridae ; Litter Decomposition ; Biocides ; Psychoactive Drugs ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Chemosphere, 2011, Vol.85(10), pp.1563-1567
    Description: ► Effects of nTiO and ambient UV-irradiation affect representatives of detrital food webs. ► Accumulation of nTiO at the bottom of the test vessel seems to affect ecotoxicity. ► nTiO and ambient UV-irradiation increases ecotoxicity due to the formation of ROS. Production and use of engineered nanoparticles, such as titanium dioxide nanoparticles (nTiO ), is increasing worldwide, enhancing their probability to enter aquatic environments. However, direct effects of nTiO as well as ecotoxicological consequences due to the interactions of nTiO with environmental factors like ultraviolet (UV) irradiation on representatives of detrital food webs have not been assessed so far. Hence, the present study displayed for the first time adverse sublethal effects of nTiO at concentrations as low as 0.2 mg L on the leaf shredding amphipod both in presence and absence of ambient UV-irradiation following a 7-d exposure. In absence of UV-irradiation, however, the effects seemed to be driven by accumulation of nTiO at the bottom of the test vessels to which the gammarids were potentially exposed. The adverse sublethal and lethal effects on gammarids caused by the combined application of nTiO and ambient UV-irradiation are suggested to be driven by the formation of reactive oxygen species. In conclusion, both the accumulation of nTiO at the bottom of the test vessel and the UV induced formation of reactive oxygen species clearly affected its ecotoxicity, which is recommended for consideration in the environmental risk assessment of nanoparticles.
    Keywords: Nanoparticle ; Titanium Dioxide ; Ultraviolet Irradiation ; Gammarus Fossarum ; Accumulation ; Reactive Oxygen Species ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Aquatic Toxicology, 2011, Vol.104(1), pp.32-37
    Description: The energy stored in coarse particulate organic matter, e.g. leaf litter, is released to aquatic ecosystems by breakdown processes involving microorganisms and leaf shredding invertebrates. The palatability of leaves and thus the feeding of shredders on leaf material are highly influenced by microorganisms. However, implications in the colonization of leaves by microorganisms (=conditioning) caused by chemical stressors are rarely studied. Our laboratory experiments, therefore, investigated for the first time effects of a fungicide on the conditioning process of leaf material by means of food-choice experiments using (Crustacea: Amphipoda). Additionally, microbial analyses were conducted to facilitate the mechanistic understanding of the observed behavior. Gammarids significantly preferred control leaf discs over those conditioned in presence of the fungicide tebuconazole at concentrations of 50 and 500 μg/L. Besides the decrease of fungal biomass with increasing fungicide concentration, also the leaf associated fungal community composition showed that species preferred by gammarids, such as , , or , were more frequent in the control. , however, which is rejected by gammarids, was abundant in all treatments suggesting an increasing importance of this species for the lower leaf palatability – as other more palatable fungal species were almost absent – in the fungicide treatments. Hence, the food-choice behavior of seems to be a suitable indicator for alterations in leaf associated microbial communities, especially fungal species composition, caused by chemical stressors. Finally, this or similar test systems may be a reasonable supplement to the environmental risk assessment of chemicals in order to achieve its protection goals, as on the one hand, indirect effects may occur far below concentrations known to affect gammarids directly, and on the other hand, the observed shifts in leaf associated microbial communities may have perpetuating implications in leaf shredding invertebrates.
    Keywords: Fungal Community ; Leaf Litter Decomposition ; Confidence Interval Testing ; Aquatic Hyphomycetes ; Azole Fungicide ; Bacteria ; Chemistry ; Ecology
    ISSN: 0166-445X
    E-ISSN: 1879-1514
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: International Journal of Environmental Analytical Chemistry, 15 June 2011, Vol.91(7-8), pp.768-785
    Description: Salt tracers (sodium bromide/sodium chloride) and two different fluorescent tracers, uranine (UR) and sulforhodamine-B (SRB), were injected as a pulse into six different surface flow wetlands (SFWs). Salt tracers documented wetland hydraulics. The fluorescent tracers were used as a reference...
    Keywords: Surface Flow Wetlands ; Residence Time Distribution ; Fluorescent Tracers ; Reference Tracer ; Contaminant Mitigation ; Sorption ; Pesticides ; Environmental Sciences ; Chemistry
    ISSN: 0306-7319
    E-ISSN: 1029-0397
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental Toxicology and Chemistry, September 1999, Vol.18(9), pp.1948-1955
    Description: The study aims to evaluate the impact of insecticides associated with rainfall‐induced surface runoff from arable land on macroinvertebrate populations. These effects of insecticides were distinguished from the hydraulic stress also associated with surface runoff. Transient increase in discharge and insecticide contamination (maximum 6 μg/L parathion‐ethyl in stream water, 302 μg/L fenvalerate in suspended particulates) was observed in a headwater stream subsequent to surface runoff from arable land. In the aquatic macroinvertebrate community, eight of the eleven abundant species disappeared, and the remaining three were reduced significantly in abundance following the insecticide‐contaminated runoff. Recovery within 6 months was observed for four species and recovery within 11 months for nine species. Two species remained at a low population density for over a year. The effects of insecticides were distinguished from other parameters, such as hydraulic stress associated with surface runoff, as well. The causal connection between insecticide contamination and biological response was established by eliminating increased hydraulic stress during surface runoff using in‐parallel bypass microcosms containing the dominant species and . The mortality of these species was similar to that of the same species in the stream. Additional microcosms, disconnected from the stream during runoff events, served as a control. Thus, the toxic potential of the runoff water is considered to be responsible for the observed effect on the macroinvertebrates. It is concluded that agricultural insecticide input may alter the dynamics of macroinvertebrate communities in streams.
    Keywords: Pesticides ; Headwater Stream ; Macroinvertebrates ; Recovery ; Microcosm
    ISSN: 0730-7268
    E-ISSN: 1552-8618
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: The Journal of biological chemistry, 22 October 2010, Vol.285(43), pp.32878-87
    Description: The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) belongs to the family of G protein-coupled receptors. The receptor possesses an N-terminal pseudo signal peptide that is unable to mediate targeting of the nascent chain to the endoplasmic reticulum membrane during early receptor biogenesis. The pseudo signal peptide remains uncleaved and consequently forms an additional hydrophobic receptor domain with unknown function that is unique within the large G protein-coupled receptor protein family. Here, we have analyzed the functional significance of this domain in comparison with the conventional signal peptide of the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R). We show that the presence of the pseudo signal peptide leads to a very low cell surface receptor expression of the CRF(2(a))R in comparison with the CRF(1)R. Moreover, whereas the presence of the pseudo signal peptide did not affect coupling to the G(s) protein, G(i)-mediated inhibition of adenylyl cyclase activity was abolished. The properties mediated by the pseudo signal peptide were entirely transferable to the CRF(1)R in signal peptide exchange experiments. Taken together, our results show that signal peptides do not only influence early protein biogenesis. In the case of the corticotropin-releasing factor receptor subtypes, the use of conventional and pseudo signal peptides have an unexpected influence on signal transduction.
    Keywords: Protein Sorting Signals ; Adenylyl Cyclases -- Metabolism ; Gtp-Binding Protein Alpha Subunits, Gi-Go -- Metabolism ; Gene Expression Regulation -- Physiology ; Receptors, Corticotropin-Releasing Hormone -- Biosynthesis ; Signal Transduction -- Physiology
    ISSN: 00219258
    E-ISSN: 1083-351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: The Journal of biological chemistry, 25 August 2006, Vol.281(34), pp.24910-21
    Description: The corticotropin-releasing factor receptor type 2a (CRF(2(a)) receptor) belongs to the family of G protein-coupled receptors. The receptor possesses a putative N-terminal signal peptide that is believed to be cleaved-off after mediating the endoplasmic reticulum targeting/insertion process, like the corresponding sequence of the homologous CRF(1) receptor. Here, we have assessed the functional significance of the putative signal peptide of the CRF(2(a)) receptor and show that it is surprisingly completely incapable of mediating endoplasmic reticulum targeting, despite meeting all sequence criteria for a functional signal by prediction algorithms. Moreover, it is uncleaved and forms part of the mature receptor protein. Replacement of residue Asn(13) by hydrophobic or positively charged residues converts the sequence into a fully functional and cleaved signal peptide demonstrating that conventional signal peptide functions are inhibited by a single amino acid residue. Deletion of the domain leads to an increase in the amount of immature, intracellularly retained receptors demonstrating that the sequence has adopted a new function in receptor trafficking through the early secretory pathway. Taken together, our results identify a novel hydrophobic receptor domain in the family of the heptahelical G protein-coupled receptors and the first pseudo signal peptide of a eukaryotic membrane protein. Our data also show that the extreme N termini of the individual CRF receptor subtypes differ substantially.
    Keywords: Receptors, Corticotropin-Releasing Hormone -- Chemistry
    ISSN: 0021-9258
    E-ISSN: 1083351X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Biochemical and Biophysical Research Communications, 24 June 1999, Vol.260(1), pp.28-34
    Description: Here we report the preliminary characterization of Yor180Cp, a novel peroxisomal protein involved in fatty acid metabolism in the yeast Saccharomyces cerevisiae. A computer-based screen identified Yor180Cp as a putative peroxisomal protein, and Yor180Cp targeted GFP to peroxisomes in a PEX8-dependent manner. Yor180Cp was also detected by mass spectrometric analysis of an HPLC-separated extract of yeast peroxisomal matrix proteins. YOR180C is upregulated during growth on oleic acid, and deletion of YOR180C from the yeast genome resulted in a mild but significant growth defect on oleic acid, indicating a role for Yor180Cp in fatty acid metabolism. In addition, we observed that yor180c Delta cells fail to efficiently import the enzyme Delta super(3), Delta super(2)-enoyl-CoA isomerase (Eci1p) to peroxisomes. This result suggested that Yor180Cp might associate with Eci1p in vivo, and a Yor180Cp-Eci1p interaction was detected using the yeast two-hybrid system. Potential roles for Yor180Cp in peroxisomal fatty acid metabolism are discussed.
    Keywords: Biology ; Chemistry ; Anatomy & Physiology
    ISSN: 0006-291X
    E-ISSN: 1090-2104
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages