Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Plant Nutrition and Soil Science, February 2010, Vol.173(1), pp.88-99
    Description: Soil, the “Earth's thin skin” serves as the delicate interface between the biosphere, hydrosphere, atmosphere, and lithosphere. It is a dynamic and hierarchically organized system of various organic and inorganic constituents and organisms, the spatial structure of which defines a large, complex, and heterogeneous interface. Biogeochemical processes at soil interfaces are fundamental for the overall soil development, and they are the primary driving force for key ecosystem functions such as plant productivity and water quality. Ultimately, these processes control the fate and transport of contaminants and nutrients into the vadose zone and as such their biogeochemical cycling. The definite objective in biogeochemical‐interface research is to gain a mechanistic understanding of the architecture of these biogeochemical interfaces in soils and of the complex interplay and interdependencies of the physical, chemical, and biological processes acting at and within these dynamic interfaces in soil. The major challenges are (1) to identify the factors controlling the architecture of biogeochemical interfaces, (2) to link the processes operative at the individual molecular and/or organism scale to the phenomena active at the aggregate scale in a mechanistic way, and (3) to explain the behavior of organic chemicals in soil within a general mechanistic framework. To put this in action, integration of soil physical, chemical, and biological disciplines is mandatory. Indispensably, it requires the adaption and development of characterization and probing techniques adapted from the neighboring fields of molecular biology, analytical and computational chemistry as well as materials and nano‐sciences. To shape this field of fundamental soil research, the German Research Foundation (DFG) has granted the Priority Program “Biogeochemical Interfaces in Soil”, in which 22 individual research projects are involved.
    Keywords: Soil Function ; Soil Architecture ; Spectro‐Microscopy ; Tomography ; Som ; Soil Microbial Ecology ; Organic Chemicals
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Vadose Zone Journal, 2009, Vol.8(3), p.805
    Description: It has been speculated that during periods of water deficit, roots may shrink and lose contact with the soil, with a consequent reduction in root water uptake. Due to the opaque nature of soil, however, this process has never been observed in situ for living plants. Through x-ray tomography and image analysis, we have demonstrated the formation and dynamics of air gaps around roots. The high spatial resolution required to image the soil–root gaps was achieved by combining tomography of the entire sample (field of view of 16 by 16 cm, pixel side 0.32 mm) with local tomography of the soil region around the roots (field of view of 5 by 5 cm, pixel side 0.09 mm). For a sandy soil, we found that when the soil dries to a water content of 0.025 m3 m–3, gaps occur around the taproot and the lateral roots of lupin (Lupinus albus L.). Gaps were larger for the taproot than the laterals and were caused primarily by root shrinkage rather than by soil shrinkage. When the soil was irrigated again, the roots swelled, partially refilling the gaps; however, large gaps persisted in the more proximal, older part of the taproot. Gaps are expected to reduce water transfers between soil and roots. Opening and closing of gaps may help plants to prevent water loss when the soil dries, and to restore the soil–root continuity when water becomes available. The persistence of gaps in the more proximal parts is one reason why roots preferentially take up water from their more distal parts. ; Includes references ; p. 805-809.
    Keywords: Soil Water Content ; Roots ; Soil-Plant Interactions ; Shrinkage ; Plants ; Translocation (Plant Physiology) ; Lupinus Albus ; Forage Legumes ; Spatial Variation ; Drought ; Water Stress ; Sandy Soils ; Water Uptake ; Computed Tomography ; Forage Crops ; Image Analysis ; Taproots;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages