Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGRIS (United Nations, Food and Agriculture Organization)  (8)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Journal of Hazardous Materials, 2011, Vol.192(2), pp.772-778
    Description: ► Meta-analysis displays reduced toxicity of wastewater due to activated carbon or ozone. ► Groups of species (invertebrates) react different than others (e.g. bacteria). ► Purification via SPE may overestimate the detoxification potential. ► bioassays showed reduced ecotoxicity due to activated carbon, ozone and TiO and UV. ► Activated carbon adsorbs nutrients, which may jeopardize any positive effect of this technique. Advanced treatment techniques, like ozone, activated carbon and TiO in combination with UV, are proposed to improve removal efficiency of micropollutants during wastewater treatment. In a meta-analysis of peer-reviewed literature, we found significantly reduced overall ecotoxicity of municipal wastewaters treated with either ozone ( = 667) or activated carbon (=113), while TiO and UV was not yet assessed. As comparative investigations regarding the detoxification potential of these advanced treatment techniques in municipal wastewater are scarce, we assessed them in four separate -feeding trials with 20 replicates per treatment. These bioassays indicate that ozone concentrations of approximately 0.8 mg ozone/mg DOC may produce toxic transformation products. However, referred effects are removed if higher ozone concentrations are used (1.3 mg ozone/mg DOC). Moreover, the application of 1 g TiO /l and ambient UV consistently reduced ecotoxicity. Although activated carbon may remove besides micropollutants also nutrients, which seemed to mask its detoxification potential, this treatment technique reduced the ecotoxicity of the wastewater following its amendment with nutrients. Hence, all three advanced treatment techniques are suitable to reduce the ecotoxicity of municipal wastewater mediated by micropollutants and may hence help to meet the requirements of the European Water Framework Directive.
    Keywords: Meta-Analysis ; Feeding Rate ; Wastewater ; Advanced Oxidation ; Activated Carbon ; Engineering ; Law
    ISSN: 0304-3894
    E-ISSN: 1873-3336
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Environmental Pollution, January 2011, Vol.159(1), pp.244-249
    Description: Climate change scenarios predict lower flow rates during summer that may lead to higher proportions of wastewater in small and medium sized streams. Moreover, micropollutants (e.g. pharmaceuticals and other contaminants) continuously enter aquatic environments via treated wastewater. However, there is a paucity of knowledge, whether extended exposure to secondary treated wastewater disrupts important ecosystem functions, e.g. leaf breakdown. Therefore, the amphipod shredder was exposed to natural stream water (  = 34) and secondary treated wastewater (  = 32) for four weeks in a semi-static test system under laboratory conditions. exposed to wastewater showed significant reductions in feeding rate (25%), absolute consumption (35%), food assimilation (50%), dry weight (18%) and lipid content (22%). Thus, high proportions of wastewater in the stream flow may affect both the breakdown rates of leaf material and thus the availability of energy for the aquatic food web as well as the energy budget of . Micropollutants in wastewater cause functional and physiological alteration in a leaf-shredding amphipod.
    Keywords: Advanced Treatment Technology ; Ecological Functioning ; Gammarus Fossarum ; Leaf Litter Breakdown ; Wastewater ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Chemosphere, 2011, Vol.85(10), pp.1563-1567
    Description: ► Effects of nTiO and ambient UV-irradiation affect representatives of detrital food webs. ► Accumulation of nTiO at the bottom of the test vessel seems to affect ecotoxicity. ► nTiO and ambient UV-irradiation increases ecotoxicity due to the formation of ROS. Production and use of engineered nanoparticles, such as titanium dioxide nanoparticles (nTiO ), is increasing worldwide, enhancing their probability to enter aquatic environments. However, direct effects of nTiO as well as ecotoxicological consequences due to the interactions of nTiO with environmental factors like ultraviolet (UV) irradiation on representatives of detrital food webs have not been assessed so far. Hence, the present study displayed for the first time adverse sublethal effects of nTiO at concentrations as low as 0.2 mg L on the leaf shredding amphipod both in presence and absence of ambient UV-irradiation following a 7-d exposure. In absence of UV-irradiation, however, the effects seemed to be driven by accumulation of nTiO at the bottom of the test vessels to which the gammarids were potentially exposed. The adverse sublethal and lethal effects on gammarids caused by the combined application of nTiO and ambient UV-irradiation are suggested to be driven by the formation of reactive oxygen species. In conclusion, both the accumulation of nTiO at the bottom of the test vessel and the UV induced formation of reactive oxygen species clearly affected its ecotoxicity, which is recommended for consideration in the environmental risk assessment of nanoparticles.
    Keywords: Nanoparticle ; Titanium Dioxide ; Ultraviolet Irradiation ; Gammarus Fossarum ; Accumulation ; Reactive Oxygen Species ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Applied Ecology, August 2014, Vol.51(4), pp.958-967
    Description: Molecular genetic methods continuously uncover cryptic lineages harboured by various species. However, from an applied perspective, it remains unclear whether and to which extent such a genetic diversity affects biological traits (e.g. ecological, behavioural and physiological characteristics) and environmental management. We assessed potential deviations regarding the trait ‘environmental stress tolerance’ using individuals from five field populations of each of two cryptic lineages (called A and B) comprised under the nominal species Gammarus fossarum. We used ammonia as a chemical stressor while assessing the feeding rate on leaf discs as a measure of sublethal response. In this context, we established a restriction fragment length polymorphism assay to allow a rapid identification of the lineages. We observed a biologically meaningful and statistically significant twofold higher overall tolerance of one cryptic lineage, lineage B, over the other. Confounding factors that may have the potential to influence the test results, such as life stage, sex, season of collection, parasitism, physiological status of organisms and upstream land‐use patterns of the river catchments, were either controlled for or displayed only minor deviations between lineages. Synthesis and applications. The trait differences observed in the present study seem to be mainly explained by the considerable genetic differentiation between cryptic lineages of one nominal species. Although traits other than tolerance have been minimally investigated in this context, this study indicates implications in the reliability and quality of environmental monitoring and management if cryptic lineage complexes are ignored. The trait differences observed in the present study seem to be mainly explained by the considerable genetic differentiation between cryptic lineages of one nominal species. Although traits other than tolerance have been minimally investigated in this context, this study indicates implications in the reliability and quality of environmental monitoring and management if cryptic lineage complexes are ignored.
    Keywords: Environmental Management ; Gammarus ; Genetic Differentiation ; Leaf Litter Breakdown ; Nominal Species ; Rflp ; Sensitivity
    ISSN: 0021-8901
    E-ISSN: 1365-2664
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Applied Ecology, April 2015, Vol.52(2), pp.310-322
    Description: The application of fungicides is considered an indispensable measure to secure crop production. These substances, however, may unintentionally enter surface waters via run‐off, potentially affecting the microbial community. To assess such risks adequately, authorities recently called for suitable test designs involving relevant aquatic micro‐organisms. We assessed the structural and functional responses of leaf‐associated microbial communities, which play a key role in the breakdown of allochthonous leaf material in streams, towards the inorganic fungicides copper (Cu) and elemental sulphur (S). These substances are of particular interest as they are authorized for both conventional and organic farming in many countries of the world. We used the food choice of the amphipod shredder Gammarus fossarum (indicative for micro‐organism‐mediated leaf palatability) as well as microbial leaf decomposition as functional endpoints. Moreover, the leaf‐associated microbial communities were characterized by means of bacterial density, fungal biomass and community composition facilitating mechanistic understanding of the observed functional effects. While Gammarus preferred Cu‐exposed leaves over unexposed ones, microbial leaf decomposition was reduced by both Cu and S (up to 30%). Furthermore, Cu exposure decreased bacterial densities (up to 60%), stimulated the growth of leaf‐associated fungi (up to 100%) and altered fungal community composition, while S did not affect any of the assessed structural endpoints. Synthesis and applications. We observed both structural and functional changes in leaf‐associated microbial communities at inorganic fungicide concentrations realistic for surface water bodies influenced by conventional and organic farming. Our data hence justify a careful re‐evaluation of the environmental safety of the agricultural use of these compounds. Moreover, inclusion of an experimental design similar to the one used in this study in lower tier environmental risk assessments of antimicrobial compounds may aid to safeguard the integrity of aquatic microbial communities and the functions they provide. We observed both structural and functional changes in leaf‐associated microbial communities at inorganic fungicide concentrations realistic for surface water bodies influenced by conventional and organic farming. Our data hence justify a careful re‐evaluation of the environmental safety of the agricultural use of these compounds. Moreover, inclusion of an experimental design similar to the one used in this study in lower tier environmental risk assessments of antimicrobial compounds may aid to safeguard the integrity of aquatic microbial communities and the functions they provide.
    Keywords: Antagonistic Effect ; Antimicrobial ; Aquatic Hyphomycetes ; Bacteria ; Biofilm ; Ecosystem Functioning ; Environmental Risk Assessment ; Heavy Metal ; Leaf Litter Breakdown ; Mixture Toxicity
    ISSN: 0021-8901
    E-ISSN: 1365-2664
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Aquatic Toxicology, 2011, Vol.104(1), pp.32-37
    Description: The energy stored in coarse particulate organic matter, e.g. leaf litter, is released to aquatic ecosystems by breakdown processes involving microorganisms and leaf shredding invertebrates. The palatability of leaves and thus the feeding of shredders on leaf material are highly influenced by microorganisms. However, implications in the colonization of leaves by microorganisms (=conditioning) caused by chemical stressors are rarely studied. Our laboratory experiments, therefore, investigated for the first time effects of a fungicide on the conditioning process of leaf material by means of food-choice experiments using (Crustacea: Amphipoda). Additionally, microbial analyses were conducted to facilitate the mechanistic understanding of the observed behavior. Gammarids significantly preferred control leaf discs over those conditioned in presence of the fungicide tebuconazole at concentrations of 50 and 500 μg/L. Besides the decrease of fungal biomass with increasing fungicide concentration, also the leaf associated fungal community composition showed that species preferred by gammarids, such as , , or , were more frequent in the control. , however, which is rejected by gammarids, was abundant in all treatments suggesting an increasing importance of this species for the lower leaf palatability – as other more palatable fungal species were almost absent – in the fungicide treatments. Hence, the food-choice behavior of seems to be a suitable indicator for alterations in leaf associated microbial communities, especially fungal species composition, caused by chemical stressors. Finally, this or similar test systems may be a reasonable supplement to the environmental risk assessment of chemicals in order to achieve its protection goals, as on the one hand, indirect effects may occur far below concentrations known to affect gammarids directly, and on the other hand, the observed shifts in leaf associated microbial communities may have perpetuating implications in leaf shredding invertebrates.
    Keywords: Fungal Community ; Leaf Litter Decomposition ; Confidence Interval Testing ; Aquatic Hyphomycetes ; Azole Fungicide ; Bacteria ; Chemistry ; Ecology
    ISSN: 0166-445X
    E-ISSN: 1879-1514
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Ecotoxicology and environmental safety, 2013, Vol.95, pp.137-143
    Description: The present study investigated sublethal effects of a field relevant pesticide mixture (one herbicide, three fungicides, five insecticides) on Gammarus fossarum by considering different peak exposure scenarios, which may be generated by the inherent properties of vegetated ditches. Additional experiments aimed at the identification of germane exposure pathways (food and water). Therefore, G. fossarum were exposed in independent experiments to three scenarios, which differed besides in the peak concentration of the pesticide mixture also in the mixture's composition and exposure duration (n=20 per treatment). The exposure duration of 12 or 120min was followed by a seven-day post-exposure observation period. At a constant concentration–time product, a lower exposure duration in concert with a proportionally higher peak concentration caused a substantially elevated ecotoxicity compared to a treatment with a longer exposure duration at a lower peak concentration. Given the importance of the insecticide lambda-cyhalothrin for the mixture's ecotoxicity it may be concluded that the fast mode of action of pyrethroids mainly explains this observation. Moreover, field relevant concentrations of the pesticide mixture applied at an exposure duration of 120min resulted in reduced gammarids' feeding rate, which may be indicative for shifts in the ecosystem function of leaf litter breakdown and hence the provision of energy for local and downstream communities. Finally, the present study indicated that both pathways of exposure, namely via food or water, reduce gammarids' feeding rate synergistically. This suggests that both exposure pathways should be considered for compounds exhibiting a high Kₒw (e.g. pyrethroids) during the risk assessment of single substances and mixtures. ; p. 137-143.
    Keywords: Exposure Duration ; Gammarus Fossarum ; Herbicides ; Ecosystems ; Fungicides ; Lambda-Cyhalothrin ; Plant Litter ; Pesticide Mixtures ; Ecotoxicology ; Exposure Pathways ; Sublethal Effects ; Risk Assessment ; Mechanism Of Action ; Pyrethrins ; Energy
    ISSN: 0147-6513
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental Science and Pollution Research, 2015, Vol.22(5), pp.3955-3957
    Description: We argued recently that the positive predictive value (PPV) and the negative predictive value (NPV) are valuable metrics to include during null hypothesis significance testing: They inform the researcher about the probability of statistically significant and non-significant test outcomes actually being true. Although commonly misunderstood, a reported p value estimates only the probability of obtaining the results or more extreme results if the null hypothesis of no effect was true. Calculations of the more informative PPV and NPV require a priori estimate of the probability ( R ). The present document discusses challenges of estimating R .
    Keywords: Sample size ; Bayesian ; Power analysis ; Effect size ; Type I error rate ; Type II error rate
    ISSN: 0944-1344
    E-ISSN: 1614-7499
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages