Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society (CrossRef)  (266)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Journal of the American Chemical Society, 16 July 2014, Vol.136(28), pp.9870-3
    Description: [NiFe] hydrogenases catalyze the reversible cleavage of hydrogen and, thus, represent model systems for the investigation and exploitation of emission-free energy conversion processes. Valuable information on the underlying molecular mechanisms can be obtained by spectroscopic techniques that monitor individual catalytic intermediates. Here, we employed resonance Raman spectroscopy and extended it to the entire binuclear active site of an oxygen-tolerant [NiFe] hydrogenase by probing the metal-ligand modes of both the Fe and, for the first time, the Ni ion. Supported by theoretical methods, this approach allowed for monitoring H-transfer from the active site and revealed novel insights into the so far unknown structure and electronic configuration of the hydrogen-binding intermediate of the catalytic cycle, thereby providing key information about catalytic intermediates and reactions of biological hydrogen activation.
    Keywords: Hydrogenase -- Chemistry
    ISSN: 00027863
    E-ISSN: 1520-5126
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of the American Chemical Society, 12 September 2012, Vol.134(36)
    Description: High-valent copper-nitrene intermediates have long been proposed to play a role in copper-catalyzed aziridination and amination reactions. However, such intermediates have eluded detection for decades, preventing the unambiguous assignments of mechanisms. Moreover, the electronic structure of the proposed copper-nitrene intermediates has also been controversially discussed in the literature. These mechanistic questions and controversy have provided tremendous motivation to probe the accessibility and reactivity of Cu(III)-NR/Cu(II)N(•)R species. In this paper, we report a breakthrough in this field that was achieved by trapping a transient copper-tosylnitrene species, 3-Sc, in the presence of scandium triflate. The sufficient stability of 3-Sc at -90 °C enabled its characterization with optical, resonance Raman, NMR, and X-ray absorption near-edge spectroscopies, which helped to establish its electronic structure as Cu(II)N(•)Ts (Ts = tosyl group) and not Cu(III)NTs. 3-Sc can initiate tosylamination of cyclohexane, thereby suggesting Cu(II)N(•)Ts cores as viable reactants in oxidation catalysis.
    Keywords: Chemistry
    ISSN: 0002-7863
    E-ISSN: 1520-5126
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Inorganic chemistry, 07 November 2011, Vol.50(21), pp.10623-32
    Description: A series of 2,5-di- and 2,3,4,5-tetraferrocenyl-substituted thiophenes, furans, and pyrroles were synthesized using the Negishi C,C cross-coupling protocol. The electronic and electrochemical properties of these compounds were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), and in situ UV-vis/NIR spectroscopy. The molecular structures of 2,5-diferrocenyl furan and 2,3,4,5-tetraferrocenyl-1-methyl-1H-pyrrole in the solid state are discussed. The ferrocenyls could sequentially be oxidized giving two or four reversible responses for the appropriate di- or tetraferrocenyl-substituted heterocyclic molecules. The observed ΔE°' values range between 186 and 450 mV. The NIR measurements confirm electronic communication as intervalence charge transfer (IVCT) absorptions were found in the corresponding mono- and in case of the tetraferrocenyl compounds also in the dicationic species. All compounds, except tetraferrocenyl thiophene (a class I system), were classified as class II systems according to Robin and Day. They show a linear relationship between ΔE°' and the IVCT oscillator strength f which could be shown for the first time in organometallic chemistry. This was possible because the series of molecules exhibit analogous geometries and hence, similar electrostatic properties. This correlation was confirmed by electro- and spectro-electrochemical measurements. Within these studies a new approach for the estimation of the effective electron transfer distances r(ab) is discussed.
    Keywords: Charge Transfer -- Analysis ; Electrostatic Interactions -- Measurement ; Furans -- Chemical Properties ; Furans -- Atomic Properties ; Furans -- Electric Properties ; Near-infrared Spectroscopy -- Usage ; Pyrroles -- Chemical Properties ; Pyrroles -- Atomic Properties ; Pyrroles -- Electric Properties ; Thiophene -- Chemical Properties ; Thiophene -- Atomic Properties ; Thiophene -- Electric Properties;
    ISSN: 00201669
    E-ISSN: 1520-510X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of the American Chemical Society, 23 January 2013, Vol.135(3), pp.1102-9
    Description: Simultaneous monitoring of multiple molecular interactions and multiplexed detection of several diagnostic biomarkers at very low concentrations have become important issues in advanced biological and chemical sensing. Here we present an optically multiplexed six-color Förster resonance energy transfer (FRET) biosensor for simultaneous monitoring of five different individual binding events. We combined simultaneous FRET from one Tb complex to five different organic dyes measured in a filter-based time-resolved detection format with a sophisticated spectral crosstalk correction, which results in very efficient background suppression. The advantages and robustness of the multiplexed FRET sensor were exemplified by analyzing a 15-component lung cancer immunoassay involving 10 different antibodies and five different tumor markers in a single 50 μL human serum sample. The multiplexed biosensor offers clinically relevant detection limits in the low picomolar (ng/mL) concentration range for all five markers, thus providing an effective early screening tool for lung cancer with the possibility of distinguishing small-cell from non-small-cell lung carcinoma. This novel technology will open new doors for multiple biomarker diagnostics as well as multiplexed real-time imaging and spectroscopy.
    Keywords: Biosensing Techniques ; Color ; Fluorescence Resonance Energy Transfer ; Biomarkers, Tumor -- Blood ; Carcinoma, Non-Small-Cell Lung -- Diagnosis ; Lung Neoplasms -- Diagnosis ; Small Cell Lung Carcinoma -- Diagnosis
    ISSN: 00027863
    E-ISSN: 1520-5126
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Organometallics, 10/28/2013, Vol.32(20), pp.5640-5653
    ISSN: 0276-7333
    E-ISSN: 1520-6041
    Source: American Chemical Society (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Journal of the American Chemical Society, 25 February 2015, Vol.137(7), pp.2555-64
    Description: Oxygen-tolerant [NiFe] hydrogenases are metalloenzymes that represent valuable model systems for sustainable H2 oxidation and production. The soluble NAD(+)-reducing [NiFe] hydrogenase (SH) from Ralstonia eutropha couples the reversible cleavage of H2 with the reduction of NAD(+) and displays a unique O2 tolerance. Here we performed IR spectroscopic investigations on purified SH in various redox states in combination with density functional theory to provide structural insights into the catalytic [NiFe] center. These studies revealed a standard-like coordination of the active site with diatomic CO and cyanide ligands. The long-lasting discrepancy between spectroscopic data obtained in vitro and in vivo could be solved on the basis of reversible cysteine oxygenation in the fully oxidized state of the [NiFe] site. The data are consistent with a model in which the SH detoxifies O2 catalytically by means of an NADH-dependent (per)oxidase reaction involving the intermediary formation of stable cysteine sulfenates. The occurrence of two catalytic activities, hydrogen conversion and oxygen reduction, at the same cofactor may inspire the design of novel biomimetic catalysts performing H2-conversion even in the presence of O2.
    Keywords: Catalytic Domain ; Hydrogenase -- Chemistry ; Nad -- Metabolism ; Oxygen -- Metabolism
    ISSN: 00027863
    E-ISSN: 1520-5126
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Journal of the American Chemical Society, 25 January 2012, Vol.134(3), pp.1876-91
    Description: The unique photophysical properties of semiconductor quantum dot (QD) bioconjugates offer many advantages for active sensing, imaging, and optical diagnostics. In particular, QDs have been widely adopted as either donors or acceptors in Förster resonance energy transfer (FRET)-based assays and biosensors. Here, we expand their utility by demonstrating that QDs can function in a simultaneous role as acceptors and donors within time-gated FRET relays. To achieve this configuration, the QD was used as a central nanoplatform and coassembled with peptides or oligonucleotides that were labeled with either a long lifetime luminescent terbium(III) complex (Tb) or a fluorescent dye, Alexa Fluor 647 (A647). Within the FRET relay, the QD served as a critical intermediary where (1) an excited-state Tb donor transferred energy to the ground-state QD following a suitable microsecond delay and (2) the QD subsequently transferred that energy to an A647 acceptor. A detailed photophysical analysis was undertaken for each step of the FRET relay. The assembly of increasing ratios of Tb/QD was found to linearly increase the magnitude of the FRET-sensitized time-gated QD photoluminescence intensity. Importantly, the Tb was found to sensitize the subsequent QD-A647 donor-acceptor FRET pair without significantly affecting the intrinsic energy transfer efficiency within the second step in the relay. The utility of incorporating QDs into this type of time-gated energy transfer configuration was demonstrated in prototypical bioassays for monitoring protease activity and nucleic acid hybridization; the latter included a dual target format where each orthogonal FRET step transduced a separate binding event. Potential benefits of this time-gated FRET approach include: eliminating background fluorescence, accessing two approximately independent FRET mechanisms in a single QD-bioconjugate, and multiplexed biosensing based on spectrotemporal resolution of QD-FRET without requiring multiple colors of QD.
    Keywords: Quantum Dots ; Biosensing Techniques -- Methods ; DNA -- Chemistry ; Fluorescence Resonance Energy Transfer -- Methods ; Luminescent Agents -- Chemistry ; Peptides -- Chemistry
    ISSN: 00027863
    E-ISSN: 1520-5126
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of agricultural and food chemistry, 04 April 2018, Vol.66(13), pp.3393-3401
    Description: Several anthraquinone derivatives are active components of fungicidal formulations particularly effective against powdery mildew fungi. The antimildew effect of compounds such as physcion and chrysophanol is largely attributed to host plant defense induction. However, so far a direct fungistatic/fungicidal effect of anthraquinone derivatives on powdery mildew fungi has not been unequivocally demonstrated. By applying a Formvar-based in vitro system we demonstrate a direct, dose-dependent effect of physcion, chrysophanol, emodin, and pachybasin on conidial germination and appressorium formation of Blumeria graminis f. sp. hordei (DC.) Speer, the causative agent of barley ( Hordeum vulgare L.) powdery mildew. Physcion was the most effective among the tested compounds. At higher doses, physcion mainly inhibited conidial germination. At lower rates, however, a distinct interference with appressorium formation became discernible. Physcion and others may act by modulating both the infection capacity of the powdery mildew pathogen and host plant defense. Our results suggest a specific arrangement of substituents at the anthraquinone backbone structure being crucial for the direct antimildew effect.
    Keywords: Anthraquinones ; Appressorium ; Barley ; Fungicide ; Germination ; Physcion ; Powdery Mildew ; Anthraquinones -- Pharmacology ; Ascomycota -- Drug Effects ; Emodin -- Analogs & Derivatives ; Fungicides, Industrial -- Pharmacology ; Hordeum -- Microbiology ; Plant Diseases -- Microbiology ; Spores, Fungal -- Growth & Development
    ISSN: 00218561
    E-ISSN: 1520-5118
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Journal of the American Chemical Society, 25 June 2014, Vol.136(25), pp.8957-62
    Description: DNA hybridization allows the design and assembly of dynamic DNA-based molecular devices. Such structures usually accomplish their function by the addition of fuel strands that drive the structure from one conformation to a new one or by internal changes in DNA hybridization. We report here on the performance and robustness of one of these devices by the detailed study of a dynamic DNA actuator. The DNA actuator was chosen as a model system, as it is the device with most discrete states to date. It is able to reversibly slide between 11 different states and can in principle function both autonomously and nonautonomously. The 11 states of the actuator were investigated by single molecule Förster Resonance Energy Transfer (smFRET) microscopy to obtain information on the static and dynamic heterogeneities of the device. Our results show that the DNA actuator can be effectively locked in several conformations with the help of well-designed DNA lock strands. However, the device also shows pronounced static and dynamic heterogeneities both in the unlocked and locked modes, and we suggest possible structural models. Our study allows for the direct visualization of the conformational diversity and movement of the dynamic DNA-based device and shows that complex DNA-based devices are inherently heterogeneous. Our results also demonstrate that single molecule techniques are a powerful tool for structural dynamics studies and provide a stringent test for the performance of molecular devices made out of DNA.
    Keywords: Fluorescence Resonance Energy Transfer ; DNA -- Chemistry
    ISSN: 00027863
    E-ISSN: 1520-5126
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Biochemistry, 14 January 2014, Vol.53(1), pp.20-9
    Description: Phytochromes constitute a class of photoreceptors that can be photoconverted between two stable states. The tetrapyrrole chromophore absorbs in the red spectral region and displays fluorescence maxima above 700 nm, albeit with low quantum yields. Because this wavelength region is particularly advantageous for fluorescence-based deep tissue imaging, there is a strong interest to engineer phytochrome variants with increased fluorescence yields. Such targeted design efforts would substantially benefit from a deeper understanding of those structural parameters that control the photophysical properties of the protein-bound chromophore. Here we have employed resonance Raman (RR) spectroscopy and molecular dynamics simulations for elucidating the chromophore structural changes in a fluorescence-optimized mutant (iRFP) derived from the PAS-GAF domain of the bacteriophytochrome RpBphP2 from Rhodopseudomas palustris . Both methods consistently reveal the structural consequences of the amino acid substitutions in the vicinity of the biliverdin chromophore that may account for lowering the propability of nonradiative excited state decays. First, compared to the wild-type protein, the tilt angle of the terminal ring D with respect to ring C is increased in iRFP, accompanied by the loss of hydrogen bond interactions of the ring D carbonyl function and the reduction of the number of water molecules in that part of the chromophore pocket. Second, the overall flexibility of the chromophore is significantly reduced, particularly in the region of rings D and A, thereby reducing the conformational heterogeneity of the methine bridge between rings A and B and the ring A carbonyl group, as concluded from the RR spectra of the wild-type proteins.
    Keywords: Phytochrome -- Chemistry
    ISSN: 00062960
    E-ISSN: 1520-4995
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages