Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: mBio, 2018, Vol.9(6)
    Description: The alphaproteobacterium Agrobacterium tumefaciens is able to infect various eudicots causing crown gall tumor formation. Based on its unique ability of interkingdom gene transfer, Agrobacterium serves as a crucial biotechnological tool for genetic manipulation of plant cells. The presence of hundreds of putative sRNAs in this organism suggests a considerable impact of riboregulation on A. tumefaciens physiology. Here, we characterized the biological function of the sRNA PmaR that controls various processes crucial for growth, motility, and virulence. Among the genes directly targeted by PmaR is ampC coding for a beta-lactamase that confers ampicillin resistance, suggesting that the sRNA is crucial for fitness in the competitive microbial composition of the rhizosphere. ABSTRACT Small regulatory RNAs play an important role in the adaptation to changing conditions. Here, we describe a differentially expressed small regulatory RNA (sRNA) that affects various cellular processes in the plant pathogen Agrobacterium tumefaciens . Using a combination of bioinformatic predictions and comparative proteomics, we identified nine targets, most of which are positively regulated by the sRNA. According to these targets, we named the sRNA PmaR for peptidoglycan biosynthesis, motility, and ampicillin resistance regulator. Agrobacterium spp. are long known to be naturally resistant to high ampicillin concentrations, and we can now explain this phenotype by the positive PmaR-mediated regulation of the beta-lactamase gene ampC . Structure probing revealed a spoon-like structure of the sRNA, with a single-stranded loop that is engaged in target interaction in vivo and in vitro . Several riboregulators have been implicated in antibiotic resistance mechanisms, such as uptake and efflux transporters, but PmaR represents the first example of an sRNA that directly controls the expression of an antibiotic resistance gene.
    Keywords: Research Article ; Molecular Biology And Physiology ; Antibiotic Resistance ; Gene Regulation ; Plant-Microbe Interaction ; Posttranscriptional Control ; Regulatory Rna
    ISSN: 21612129
    E-ISSN: 2150-7511
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: mBio, 2018, Vol.9(6)
    Description: P. aeruginosa is a soil dwelling bacterium and a plant pathogen, and it also causes life-threatening infections in humans. Thus, P. aeruginosa thrives in diverse environments and over a broad range of temperatures. Some P. aeruginosa strains rely on the CRISPR-Cas adaptive immune system as a phage defense mechanism. Our discovery that low temperatures increase CRISPR adaptation suggests that the rarely occurring but crucial naive adaptation events may take place predominantly under conditions of slow growth, e.g., during the bacterium’s soil dwelling existence and during slow growth in biofilms. ABSTRACT Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) systems are adaptive defense systems that protect bacteria and archaea from invading genetic elements. In Pseudomonas aeruginosa , quorum sensing (QS) induces the CRISPR-Cas defense system at high cell density when the risk of bacteriophage infection is high. Here, we show that another cue, temperature, modulates P. aeruginosa CRISPR-Cas. Increased CRISPR adaptation occurs at environmental (i.e., low) temperatures compared to that at body (i.e., high) temperature. This increase is a consequence of the accumulation of CRISPR-Cas complexes, coupled with reduced P. aeruginosa growth rate at the lower temperature, the latter of which provides additional time prior to cell division for CRISPR-Cas to patrol the cell and successfully eliminate and/or acquire immunity to foreign DNA. Analyses of a QS mutant and synthetic QS compounds show that the QS and temperature cues act synergistically. The diversity and level of phage encountered by P. aeruginosa in the environment exceed that in the human body, presumably warranting increased reliance on CRISPR-Cas at environmental temperatures.
    Keywords: Research Article ; Molecular Biology And Physiology ; Crispr ; Phage ; Pseudomonas ; Quorum Sensing ; Growth Rate
    ISSN: 21612129
    E-ISSN: 2150-7511
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS Genetics, 01 June 2018, Vol.14(6), p.e1007401
    Description: Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.
    Keywords: Biology
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Frontiers in microbiology, 2018, Vol.9, pp.1929
    Description: Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
    Keywords: Nanosims Imaging ; X-Ray Computed ; Biodiversity ; Single-Cell Genomics ; Soil Microbiology ; Tomography ; Upscaling
    ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Cell Reports, 23 October 2018, Vol.25(4), pp.1027-1039.e6
    Description: , which encodes p21, functions as a major route for p53-mediated cell-cycle arrest. However, the consequence of gene dosage on tumor suppression has not been systematically investigated. Here, we employed BAC transgenesis to generate a mouse, which harbors an additional allele within its natural genomic context. We show that these mice display enhanced cell-cycle arrest and reduced apoptosis in response to genotoxic stress. Furthermore, using a chemically induced skin cancer model and an autochthonous -driven lung adenocarcinoma model, we show that mice display a cancer protection phenotype that is indistinguishable from that observed in animals. Moreover, we demonstrate that and cooperate in mediating cancer resistance, using a chemically induced fibrosarcoma model. Overall, our allele enabled us to assess the contribution of to -mediated tumor suppression. Torgovnick et al. create a mouse model, carrying a third copy of (p21), which shows enhanced cell-cycle arrest capacity and protection against DNA damage-induced apoptosis. The animals display delayed epithelial regeneration and a robust cancer resistance phenotype, highlighting the importance of p21 in p53-dependent tumor suppression.
    Keywords: Cdkn1a ; P21 ; P53 ; Mouse Model ; Cancer ; Tumor Suppressor ; Cell Cycle Arrest ; Apoptosis ; Cancer Protection ; Biology
    ISSN: 2211-1247
    E-ISSN: 2211-1247
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages