Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: PLoS ONE, 01 January 2014, Vol.9(2), p.e90559
    Description: In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 2011, Vol.6(5), p.e20112
    Description: The production and use of nanoparticles (NP) has steadily increased within the last decade; however, knowledge about risks of NP to human health and ecosystems is still scarce. Common knowledge concerning NP effects on freshwater organisms is largely limited to standard short-term (≤48 h) toxicity tests, which lack both NP fate characterization and an understanding of the mechanisms underlying toxicity. Employing slightly longer exposure times (72 to 96 h), we found that suspensions of nanosized (∼100 nm initial mean diameter) titanium dioxide (nTiO 2 ) led to toxicity in Daphnia magna at nominal concentrations of 3.8 (72-h EC 50 ) and 0.73 mg/L (96-h EC 50 ). However, nTiO 2 disappeared quickly from the ISO-medium water phase, resulting in toxicity levels as low as 0.24 mg/L (96-h EC 50 ) based on measured concentrations. Moreover, we showed that nTiO 2 (∼100 nm) is significantly more toxic than non-nanosized TiO 2 (∼200 nm) prepared from the same stock suspension. Most importantly, we hypothesized a mechanistic chain of events for nTiO 2 toxicity in D. magna that involves the coating of the organism surface with nTiO 2 combined with a molting disruption. Neonate D. magna (≤6 h) exposed to 2 mg/L nTiO 2 exhibited a “biological surface coating” that disappeared within 36 h, during which the first molting was successfully managed by 100% of the exposed organisms. Continued exposure up to 96 h led to a renewed formation of the surface coating and significantly reduced the molting rate to 10%, resulting in 90% mortality. Because coating of aquatic organisms by manmade NP might be ubiquitous in nature, this form of physical NP toxicity might result in widespread negative impacts on environmental health.
    Keywords: Research Article ; Biology ; Chemistry ; Earth Sciences ; Materials Science ; Medicine ; Chemistry ; Public Health And Epidemiology ; Marine And Aquatic Sciences ; Ecology ; Critical Care And Emergency Medicine ; Science Policy ; Biochemistry ; Non-clinical Medicine
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, 01 January 2018, Vol.13(6), p.e0199132
    Description: The application of engineered silver nanoparticles (AgNPs) in a considerable amount of registered commercial products inevitably will result in the continuous release of AgNPs into the natural aquatic environment. Therefore, native biofilms,...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of Hydrology and Hydromechanics, 01 June 2016, Vol.64(2), pp.176-195
    Description: Environmental conditions play a major role for effects of olive mill wastewater (OMW) application to soil. Choosing a different season for OMW application than the commonly practiced winter, may help avoid negative effects. However, understanding...
    Keywords: Olive Mill Wastewater ; Soil Water Repellency ; Acidification ; Salinity ; Soluble Phenolic Compounds ; Leaching ; Geography
    E-ISSN: 0042-790X
    E-ISSN: 13384333
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Environmental Sciences Europe, 2018, Vol.30(1), pp.1-17
    Description: Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing production volume. This economic success comes along with their presence in the environment and the risk of potentially adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, fate, and effects of nanoparticles has been made. Predictions of environmental concentrations based on modelling approaches could recently be confirmed by measured concentrations in the field. Nonetheless, analytical techniques are, as covered elsewhere, still under development to more efficiently and reliably characterize and quantify nanoparticles, as well as to detect them in complex environmental matrixes. Simultaneously, the effects of nanoparticles on aquatic and terrestrial systems have received increasing attention. While the debate on the relevance of nanoparticle-released metal ions for their toxicity is still ongoing, it is a re-occurring phenomenon that inert nanoparticles are able to interact with biota through physical pathways such as biological surface coating. This among others interferes with the growth and behaviour of exposed organisms. Moreover, co-occurring contaminants interact with nanoparticles. There is multiple evidence suggesting nanoparticles as a sink for organic and inorganic co-contaminants. On the other hand, in the presence of nanoparticles, repeatedly an elevated effect on the test species induced by the co-contaminants has been reported. In this paper, we highlight recent achievements in the field of nano-ecotoxicology in both aquatic and terrestrial systems but also refer to substantial gaps that require further attention in the future.
    Keywords: Nanomaterials ; Co-contaminants ; Environmental parameters ; Review ; Fate
    ISSN: 2190-4707
    E-ISSN: 2190-4715
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Separations, 01 October 2018, Vol.5(4), p.50
    Description: An increasing amount of TiO2 engineered nanoparticles (TNP) is released into soils and sediments, increasing the need for dedicated detection methods. Titanium is naturally present in soils at concentrations typically much higher than the estimated...
    Keywords: Tio2 ; Extraction ; Soil ; Hydrodynamic Chromatography ; Icp-MS ; Natural Nanoparticles ; Chemistry
    E-ISSN: 2297-8739
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: PLoS ONE, May 2, 2018, Vol.13(5), p.e0195479
    Description: Laser-induced cell transfer has been developed in recent years for the flexible and gentle printing of cells. Because of the high transfer rates and the superior cell survival rates, this technique has great potential for tissue engineering applications. However, the fact that material from an inorganic sacrificial layer, which is required for laser energy absorption, is usually transferred to the printed target structure, constitutes a major drawback of laser based cell printing. Therefore alternative approaches using deep UV laser sources and protein based acceptor films for energy absorption, have been introduced. Nevertheless, deep UV radiation can introduce DNA double strand breaks, thereby imposing the risk of carcinogenesis. Here we present a method for the laser-induced transfer of hydrogels and mammalian cells, which neither requires any sacrificial material for energy absorption, nor the use of UV lasers. Instead, we focus a near infrared femtosecond (fs) laser pulse ([lambda] = 1030 nm, 450 fs) directly underneath a thin cell layer, suspended on top of a hydrogel reservoir, to induce a rapidly expanding cavitation bubble in the gel, which generates a jet of material, transferring cells and hydrogel from the gel/cell reservoir to an acceptor stage. By controlling laser pulse energy, well-defined cell-laden droplets can be transferred with high spatial resolution. The transferred human (SCP1) and murine (B16F1) cells show high survival rates, and good cell viability. Time laps microscopy reveals unaffected cell behavior including normal cell proliferation.
    Keywords: Femtosecond Lasers -- Usage ; Tissue Engineering ; Cells (Biology) ; Radiation (Physics)
    ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: PLoS ONE, 01 January 2013, Vol.8(6), p.e65359
    Description: It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Agriculture, 01 September 2015, Vol.5(3), pp.857-878
    Description: Although olive mill wastewater (OMW) is often applied onto soil and is known to be phytotoxic, its impact on soil fauna is still unknown. The objective of this study was to investigate how OMW spreading in olive orchards affects Oribatida and...
    Keywords: Olive Mill Waste Water ; Hydrophobicity ; Oribatida ; Collembola ; Field Study ; Agriculture
    E-ISSN: 2077-0472
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages