Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: PLoS ONE, 01 January 2016, Vol.11(7), p.e0159948
    Description: Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Vadose Zone Journal, 01 March 2018, Vol.17(1)
    Description: X-ray radiography is a suitable approach to study water dynamics in undisturbed soil. However, beam hardening impairs the deduction of soil moisture changes from X-ray attenuation, especially when studying infiltration of water into cylindrical soil columns. We developed a calibration protocol to correct for beam hardening effects that enables the quantitative determination of changing average water content in two-dimensional projections. The method works for a broad range of materials and is easy to implement. Moreover, we studied the drift of X-ray attenuation values due to the detector latency and eliminated its contribution to the quantitative analysis. Finally we could visualize the dynamics of infiltrating water into undisturbed cylindrical soil samples.
    Keywords: Agriculture
    ISSN: 1539-1663
    E-ISSN: 1539-1663
    Source: Directory of Open Access Journals (DOAJ)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Hydrology and Earth System Sciences, 2016, Vol.20(10), pp.4017-4030
    Description: Prediction and modeling of localized flow processes in macropores is of crucial importance for sustaining both soil and water quality. However, currently there are no reliable means to predict preferential flow due to its inherently large spatial variability. The aim of this study was to investigate the predictive performance of previously developed empirical models for both water and air flow and to explore the potential applicability of X-ray computed tomography (CT)-derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6#xE2;#x80;#xAF;cm diameter and 3.5#xE2;#x80;#xAF;cm height) were extracted from the topsoil (5#xE2;#x80;#xAF;cm to 8.5#xE2;#x80;#xAF;cm depth) in a 15#xE2;#x80;#xAF;m#xE2;#x80;#xAF;#xE2;#x80;#x89;#xC3;#x97;#xE2;#x80;#x89;#xE2;#x80;#xAF;15#xE2;#x80;#xAF;m grid from an agricultural field located in Silstrup, Denmark. All soil columns were scanned with an industrial X-ray CT scanner (129#xE2;#x80;#xAF;#xC2;#xB5;m resolution) and later employed for measurement of saturated hydraulic conductivity, air permeability at -30 and -100#xE2;#x80;#xAF;cm matric potential, and gas diffusivity at -30 and -100#xE2;#x80;#xAF;cm matric potential. Distribution maps for saturated hydraulic conductivity, air permeability, and gas diffusivity reflected no autocorrelation irrespective of soil texture and organic matter content. Existing empirical predictive models for saturated hydraulic conductivity and air permeability showed poor performance, as they were not able to realistically capture macropore flow. The tested empirical model for gas diffusivity predicted measurements at -100#xE2;#x80;#xAF;cm matric potential reasonably well, but failed at -30#xE2;#x80;#xAF;cm matric potential, particularly for soil columns with biopore-dominated flow. X-ray CT-derived macroporosity matched the measured air-filled porosity at -30#xE2;#x80;#xAF;cm matric potential well. Many of the CT-derived macropore network characteristics were strongly interrelated. Most of the macropore network characteristics were also significantly correlated with saturated hydraulic conductivity, air permeability, and gas diffusivity. The predictive Ahuja et al.#xC2;#xA0;(1984) model for saturated hydraulic conductivity, air permeability, and gas diffusivity performed reasonably well when parameterized with novel, X-ray CT-derived parameters such as effective percolating macroporosity for biopore-dominated flow and total macroporosity for matrix-dominated flow. The obtained results further indicate that it is crucially important to discern between matrix-dominated and biopore-dominated flow for accurate prediction of macropore flow from X-ray CT-derived macropore network characteristics.
    Keywords: Hydrogeology – Analysis ; Permeability – Analysis ; Porosity – Analysis ; Cat Scans – Analysis;
    ISSN: Hydrology and Earth System Sciences
    ISSN: 10275606
    E-ISSN: 1607-7938
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Frontiers in Environmental Science, 01 April 2018, Vol.6
    Description: Soil-borne nitrous oxide (N2O) emissions have a high spatial and temporal variability which is commonly attributed to the occurrence of hotspots and hot moments for microbial activity in aggregated soil. Yet there is only limited information about the biophysical processes that regulate the production and consumption of N2O on microscopic scales in undisturbed soil. In this study, we introduce an experimental framework relying on simplified porous media that circumvents some of the complexities occuring in natural soils while fully accounting for physical constraints believed to control microbial activity in general and denitrification in particular. We used this framework to explore the impact of aggregate size and external oxygen concentration on the kinetics of O2 consumption, as well as CO2 and N2O production. Model aggregates of different sizes (3.5 vs. 7 mm diameter) composed of porous, sintered glass were saturated with a defined growth medium containing roughly 109 cells ml−1 of the facultative anaerobic, nosZ-deficient denitrifier Agrobacterium tumefaciens with N2O as final denitrification product and incubated at five different oxygen levels (0–13 vol-%). We demonstrate that the onset of denitrification depends on the amount of external oxygen and the size of aggregates. Smaller aggregates were better supplied with oxygen due to a larger surface-to-volume ratio, which resulted in faster growth and an earlier onset of denitrification. In larger aggregates, the onset of denitrification was more gradual, but with comparably higher N2O production rates once the anoxic aggregate centers were fully developed. The normalized electron flow from the reduced carbon substrate to N-oxyanions (edenit-/etotal- ratio) could be solely described as a function of initial oxygen concentration in the headspace with a simple, hyperbolic model, for which the two empirical parameters changed with aggregate size in a consistent way. These findings confirm the important role of soil structure on N2O emissions from denitrification by shaping the spatial patterns of microbial activity and anoxia in aggregated soil. Our dataset may serve as a benchmark for constraining or validating spatially explicit, biophysical models of denitrification in aggregated soil.
    Keywords: Greenhouse Gas Emissions ; Denitrification Kinetics ; Microbial Hotspots ; Microsites ; Anoxic Aggregate Centers ; Agrobacterium Tumefaciens ; Environmental Sciences
    E-ISSN: 2296-665X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: SOIL, 2018, Vol.4(1), pp.83-92
    Description: The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision-making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here, we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.
    Keywords: Soil Stability ; Evaluation ; Agricultural Production ; Modelling ; Agricultural Management ; Biodiversity ; Soil Stability ; Food Production ; Water Quality ; Raw Materials ; Biological Activity ; Decision Making ; Soil Improvement ; Soil Science ; Terrestrial Environments ; Interactions ; Water Quality ; Soil Management ; Modelling ; Raw Materials ; Raw Materials ; Soil Sciences ; Water Quality ; Soils ; Framework ; Stability ; Nutrient Cycles ; Mathematical Models ; Agricultural Production ; Biodiversity ; Nutrients (Mineral) ; Soils ; Decision Making ; Water Quality ; Biodiversity ; Biodiversity;
    ISSN: SOIL
    E-ISSN: 2199-398X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Frontiers in Microbiology, 01 August 2018, Vol.9
    Description: Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
    Keywords: Soil Microbiology ; Biodiversity ; Upscaling ; Tomography ; X-Ray Computed ; Nanosims Imaging ; Biology
    E-ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Article
    Article
    Language: English
    In: Vadose Zone Journal, 01 July 2019, Vol.18(1)
    Description: Soil hydrology is a key control for the functioning of the terrestrial environment. Many environmental issues that we need to tackle today are directly linked to soil water dynamics. This includes agricultural production and food security, nutrient cycling and carbon storage, prevention of soil degradation and erosion, and last but not least, clean water resources and flood protection. However, these problems need to be addressed at the scales of fields, regions, and landscapes, while soil water dynamics and soil hydraulic properties are well understood and typically measured at much smaller scales—the comfort zone of soil physics. An obvious problem is how to link these vastly different scales and how to profit from small-scale understanding to improve our capability to predict what is going on at the large scale. In this update, this problem is discussed based on insights gained during the last decades. As a synthesis, a two-step scaling approach is proposed for modeling soil water dynamics from local to landscape scales where the scale of the soil profile is the stepping stone.
    Keywords: Agriculture
    ISSN: 1539-1663
    E-ISSN: 1539-1663
    Source: Directory of Open Access Journals (DOAJ)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Biogeosciences, Sept 27, 2019, Vol.16(18), p.3665
    Description: pSoil denitrification is the most important terrestrial process returning reactive nitrogen to the atmosphere, but remains poorly understood. In upland soils, denitrification occurs in hotspots of enhanced microbial activity, even under well-aerated conditions, and causes harmful emissions of nitric (NO) and nitrous oxide (N.sub.2 O). The timing and magnitude of such emissions are difficult to predict due to the delicate balance of oxygen (O.sub.2) consumption and diffusion in soil. To study how spatial distribution of hotspots affects O.sub.2 exchange and denitrification, we embedded microbial hotspots composed of porous glass beads saturated with growing cultures of either Agrobacterium tumefaciens (a denitrifier lacking N.sub.2 O reductase) or Paracoccus denitrificans (a "complete" denitrifier) in different architectures (random vs. layered) in sterile sand that was adjusted to different water saturations (30thinsp;%, 60thinsp;%, 90thinsp;%). Gas kinetics (O.sub.2, CO.sub.2, NO, N.sub.2 O and N.sub.2) were measured at high temporal resolution in batch mode. Air connectivity, air distance and air tortuosity were determined by X-ray tomography after the experiment. The hotspot architecture exerted strong control on microbial growth and timing of denitrification at low and intermediate saturations, because the separation distance between the microbial hotspots governed local oxygen supply. Electron flow diverted to denitrification in anoxic hotspot centers was low (2thinsp;%-7thinsp;%) but increased markedly (17thinsp;%-27thinsp;%) at high water saturation. X-ray analysis revealed that the air phase around most of the hotspots remained connected to the headspace even at 90thinsp;% saturation, suggesting that the threshold response of denitrification to soil moisture could be ascribed to increasing tortuosity of air-filled pores and the distance from the saturated hotspots to these air-filled pores. Our findings suggest that denitrification and its gaseous product stoichiometry depend not only on the amount of microbial hotspots in aerated soil, but also on their spatial distribution. We demonstrate that combining measurements of microbial activity with quantitative analysis of diffusion lengths using X-ray tomography provides unprecedented insights into physical constraints regulating soil microbial respiration in general and denitrification in particular. This paves the way to using observable soil structural attributes to predict denitrification and to parameterize models. Further experiments with natural soil structure, carbon substrates and microbial communities are required to devise and parametrize denitrification models explicit for microbial hotspots.
    Keywords: Nitrogen Oxides – Analysis ; Soil Microbiology – Analysis ; Denitrification – Analysis ; Soil Carbon – Analysis
    ISSN: 1726-4170
    E-ISSN: 17264189
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Vadose Zone Journal, 01 June 2019, Vol.18(1)
    Description: Biological activity in soil causes fluxes of O into and CO out of the soil with significant global relevance. Hence, the dynamics of CO concentrations in soil can be used as an indicator for biological activity. However, there is an enormous spatial and temporal variability in soil respiration, which has led to the notion of hotspots and hot moments. This variability is attributed to the spatiotemporal heterogeneity of both plant–soil–microbiome interactions and the local conditions governing gas transport. For the characterization of a given soil, the local heterogeneities should be replaced by some meaningful average. To this end, we introduce a line sensor based on tubular gas-selective membranes that is applicable at the field scale for a wide range in water content. It provides the average CO concentration of the ambient soil along its length. The new technique corrects for fluctuating external conditions (i.e., temperature and air pressure) and the impact of water vapor without any further calibration. The new line sensor was tested in a laboratory mesocosm experiment where CO concentrations were monitored at two depths during the growth of barley ( L.). The results could be consistently related to plant development, plant density, and changing conditions for gas diffusion toward the soil surface. The comparison with an independent CO sensor confirmed that the new sensor is actually capable of determining meaningful average CO concentrations in a natural soil for long time periods.
    Keywords: Agriculture
    ISSN: 1539-1663
    E-ISSN: 1539-1663
    Source: Directory of Open Access Journals (DOAJ)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages