Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Soil & Tillage Research, January 2018, Vol.175, pp.205-216
    Description: In recent years, there has been an increased application of conservation-oriented tillage techniques, where instead of being turned the soil is only loosened or not tilled at all. Strip tillage, a special form of conservation tillage, results in small-scale structural differences, since tillage is performed only within the seed row, while the soil between seed rows is not tilled. However, tillage always impacts upon physical soil properties and processes. A combined application of conventional soil mechanical methods and X-ray computed tomography (X-ray CT) is employed here in order to investigate small-scale structural differences in a chernozem (texture 0–30 cm: silt loam) located in central Germany under strip tillage (within and between seed rows) compared to no tillage and mulch tillage. Apart from recording changes over time (years: 2012, 2014, 2015) to dry bulk density and saturated conductivity at soil depths 2–8 and 12–18 cm, stress-strain tests were conducted to map mechanical behaviour for a load range of 5–550 kPa at a soil depth of 12–18 cm (year 2015). Mechanical precompression stress was determined from the stress-dry bulk density curves. In addition, computed tomography scans were created followed by quantitative image analysis of the morphometric parameters mean macropore diameter, macroporosity, connectivity and anisotropy of the same soil samples. For strip tillage between seed rows and no tillage, a significant increase in dry bulk density was observed over time compared to strip tillage within the seed row and mulch tillage. This was more pronounced at a soil depth of 2–8 cm than at 12–18 cm. Despite higher dry bulk density, strip tillage between the seed row displayed also an increasing saturated conductivity compared to strip tillage within the seed row and mulch tillage. The computed tomography scans showed that the macropores became more compressed and soil aggregates were pushed together as mechanical stress increased, with the aggregate arrangement being transformed down into a coherent soil mass. The soil mechanical and morphometric parameters supported each other in terms of what they revealed about the mechanical properties of the soil structures. For instance, in the strip tillage between seed rows and no tillage treatments, the lack of soil tillage not only resulted in higher dry bulk densities, but also higher aggregate densities, mechanical precompression stress values, mean macropore diameters as well as lower macroporosity and connectivity values compared to mulch tillage and strip tillage within the seed row. The computed tomography parameters are therefore highly suitable for providing Supplementary information about the compaction process. Overall, this study showed that strip tillage combines the advantages of no tillage and a deeper, soil conservation-oriented primary tillage because, on a small scale, it creates two distinct soil structures which are beneficial in terms of optimal plant growth as well as mechanical resistance by driving over the soil.
    Keywords: Pre-Compression Stress ; Dry Bulk Density ; Aggregate Density ; Image Analysis ; Soil Compaction ; Agriculture
    ISSN: 0167-1987
    E-ISSN: 1879-3444
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Geoderma, 01 September 2018, Vol.325, pp.37-48
    Description: Organic particles including microorganisms are a significant fraction of the mobile organic matter (MOM) pool that contributes to initial pedogenesis. Still, the dynamics and the interplay of the multitude of processes that control the mobilization, transport, and retention of MOM are vastly unclear. We studied this interplay using an ‘artificial soil’ as model for a young, unstructured soil with defined initial composition employing a novel two-layer column experiment. The upstream layer was composed of a mixture of well-defined mineral phases, a sterile organic matter source and a diverse, natural microbial inoculant mimicking an organic-rich topsoil. The downstream layer, mimicking the subsoil, was composed of the mineral phases, only. Columns were run under water-unsaturated flow conditions with multiple flow interruptions to reflect natural flow regimes and to detect possible non-equilibrium processes. Pore system changes caused by flow were inspected by scanning electron microscopy and computed micro-tomography. MOM-related physicochemical effluent parameters and bacterial community diversity and abundance were assessed by molecular analysis of the effluent and the solid phase obtained after the long-term irrigation experiment (75 d). Tomographic data showed homogeneous packing of the fine-grained media (sandy loam). During flow, the initially single-grain structured artificial soil showed no connected macropores. In total, 6% of the initial top layer organic matter was mobile. The release and transport of particulate (1.2%) and dissolved organic matter (4.8%) including bacteria were controlled by non-equilibrium conditions. Bacterial cells were released and selectively transported to downstream layer resulting in a depth-dependent and selective establishment of bacterial communities in the previously sterile artificial soil. This study underlines the importance of bacterial transport from the surface or topsoil for colonization and maturation of downstream compartments. This initial colonization of pristine surfaces is the major step in forming biogeochemical interfaces - the prominent locations of intensive biological activity and element turnover that seem to play a major role for the functioning of soil.
    Keywords: Mobile Organic Matter ; Unsaturated Two-Layer Column Experiment ; Experimental Pedogenesis ; Artificial Soil ; Computed Micro-Tomography ; Molecular Analysis ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages