Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • HAL (CCSd)  (9)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 29 March 2016, Vol.113(13), pp.3557-62
    Description: Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
    Keywords: Fundiveurope ; Biodiversity ; Ecosystem Functioning ; Spatial Scale ; Β-Diversity ; Biodiversity ; Forests
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Annals of Forest Science, 2013, Vol.70(2), pp.195-207
    Description: CONTEXT : Since storm damage has a large impact on forest management in Central Europe, we investigated the main storm risk factors for two important conifer species, Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) and Norway spruce (Picea abies [L.] Karst.). AIMS : We compared general storm damage levels of Douglas-fir and Norway spruce, the latter being known to have high storm risk among European tree species. METHODS : Generalized linear mixed models and boosted regression trees were applied to recorded storm damage of individual trees from long-term experimental plots in southwest Germany. This included two major winter storm events in 1990 and 1999. Over 40 candidate predictors were tested for their explanatory power for storm damage and summarized into predictor categories for further interpretation. RESULTS : The two most important categories associated with storm damage were timber removals and topographic or site information, explaining between 18 and 54 % of storm damage risk, respectively. Remarkably, general damage levels were not different between Douglas-fir and Norway spruce. CONCLUSION : Under current forest management approaches, Douglas-fir may be considered a species with high storm risk in Central Europe, comparable to that of Norway spruce. ; p. 195-207.
    Keywords: Storm damage ; Risk ; Windthrow ; Douglas-fir ; Norway spruce ; Southwest Germany ; Empirical modeling
    ISSN: 1286-4560
    E-ISSN: 1297-966X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Annals of Forest Science, 2014, Vol.71(3), pp.381-393
    Description: CONTEXT : Cluster planting has become a conventional establishment method for oaks in Central Europe, where the spacing of seedlings within clusters varies between ‘nests’ (0.2 × 0.2� m) and ‘groups’ (1 × 1� m). Although the space between clusters is expected to fill with voluntary regeneration, its competitive effect on oak growth and quality had not been studied yet. AIMS : The aim of the study was to analyse the effects of inter- and intraspecific interactions on growth and quality of oaks grown in cluster plantings by quantifying the influence of neighbouring trees. In addition, we analysed whether the spatial position of oaks within groups (inner section or periphery) influenced their quality development. METHODS : Using Hegyi’s competition index, the influence of competition from intra- and interspecific trees from early, mid- and late-successional species, on diameter, height, slenderness and quality (length of branch-free bole) of 10- to 26-year-old oaks grown in cluster planting stands was quantified at seven sites in Baden-Württemberg and Hessen, Germany. RESULTS : In general, mid- and late-successional trees exerted a stronger competitive influence on growth of target oaks in clusters than the conspecific oaks and pioneer tree species. Oak quality development benefited from intraspecific competition, but self-pruning was not further promoted through additional interspecific competition. Within groups, inner oaks had a higher probability of developing into potential future crop trees than outer oaks. CONCLUSION : Our study showed that intra- and interspecific competition had different effects on target oak trees and that these effect differed between nest and group plantings. The development of naturally regenerated and planted trainer trees in group plantings should be monitored carefully and if necessary be controlled through thinning or pollarding. ; p. 381-393.
    Keywords: Intraspecific competition ; Interspecific competition ; Facilitation ; Stem quality ; Cluster planting ; Generalized linear models
    ISSN: 1286-4560
    E-ISSN: 1297-966X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PARASITES & VECTORS, 2018
    Description: Background: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. Methods: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. Results: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood. Conclusions: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.
    Keywords: Biology And Life Sciences ; Earth And Environmental Sciences ; Climate Gradient ; Dilution Habitat ; Disease Ecology ; Ecosystem Disservice ; Functional Ecology ; Landscape Epidemiology ; Land-Use Change ; Lyme Disease Risk ; Multi-Scale Analysis ; Smallforest ; Co-Feeding Transmission ; Tick-Borne Pathogens ; Lyme Borreliosis ; Sensu-Lato ; Agricultural Landscapes ; Litter Decomposition ; Small Mammals ; Functional Traits ; Seed Predation ; Acari
    ISSN: 1756-3305
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Current Forestry Reports, 2017, Vol.3(3), pp.223-243
    Description: Purpose of review Forests are frequently exposed to natural disturbances, which are likely to increase with global change, and may jeopardize the delivery of ecosystem services. Mixed-species forests have often been shown to be more productive than monocultures, but it is unclear whether this results from mixed stands being in part more resistant to various biotic and abiotic disturbance factors. This review investigates the relationships between tree diversity and stand resistance to natural disturbances and explores the ecological mechanisms behind the observed relationships. Recent findings Mixed forests appear to be more resistant than monocultures to small mammalian herbivores, soil-borne fungal diseases and specialized insect herbivores. Admixing broadleaves to conifers also increases the resistance to fire and windstorms when compared to pure conifer stands. However, mixed forests may be more affected by drought depending on the species in the mixture. Summary Overall, our findings suggest that mixed forests are more resistant to natural disturbances that are relatively small-scale and selective in their effect. However, benefits provided by mixtures are less evident for larger-scale disturbances. Higher tree diversity translates into increased resistance to disturbances as a result of ecological trait complementarity among species, reduction of fuel and food resources for herbivores, enhancement of diversion or disruption processes, and multi-trophic interactions such as predation or symbiosis. To promote resistance, the selection of tree species with different functional characteristics appears more important than increasing only the number of species in the stand. Trees with different levels of susceptibility to different hazards should be intermixed in order to reduce the amount of exposed resources and to generate barriers against contagion. However, more research is needed to further improve associational resistance in mixed forests, through a better understanding of the most relevant spatial and temporal scales of species interactions and to optimize the overall provision of ecosystem services.
    Keywords: Associational resistance ; Associational susceptibility ; Biodiversity ; Drought ; Ecosystem services ; Fire ; Fungal pathogens ; Insect herbivores ; Invasive species ; Mammalian browsers ; Wind
    E-ISSN: 2198-6436
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Forestry, 2014, Vol. 87(4), pp.492-503
    Description: In many parts of Europe, close-to-nature silviculture (CNS) has been widely advocated as being the best approach for managing forests to cope with future climate change. In this review, we identify and evaluate six principles for enhancing the adaptive capacity of European temperate forests in a changing climate: (1) increase tree species richness, (2) increase structural diversity, (3) maintain and increase genetic variation within tree species, (4) increase resistance of individual trees to biotic and abiotic stress, (5) replace high-risk stands and (6) keep average growing stocks low. We use these principles to examine how three CNS systems (single-tree selection, group selection and shelterwood) serve adaptation strategies. Many attributes of CNS can increase the adaptive capacity of European temperate forests to a changing climate. CNS promotes structural diversity and tree resistance to stressors, and growing stocks can be kept at low levels. However, some deficiencies exist in relation to the adaptation principles of increasing tree species richness, maintaining and increasing genetic variation, and replacing high-risk stands. To address these shortcomings, CNS should make increased use of a range of regeneration methods, in order to promote light-demanding tree species, non-native species and non-local provenances.
    Keywords: Provenance ; Genetic Variation ; Trees ; Temperate Forests ; Shelterwood Systems ; Introduced Species ; Species Diversity ; Climate Change ; Climate ; Abiotic Stress;
    ISSN: 0015-752X
    E-ISSN: 1464-3626
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: NATURE COMMUNICATIONS, 2016
    Description: There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.
    Keywords: Earth And Environmental Sciences ; Species Richness ; Soil Microbial Biomass ; Statistical Inevitability ; Current Knowledge ; Extraction Method ; Plant Diversity ; Services ; Nitrogen ; Carbon ; Challenges
    ISSN: 2041-1723
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Mixed-Species Forests
    Description: In many parts of the world, forests are likely to face novel disturbance regimes as a result of global change processes, and there is concern that the capacity of forest ecosystems to withstand, recover from, or adapt to these novel disturbance...
    Keywords: Life Sciences ; Forest Ecosystem ; Disturbance ; Changement Global ; Écosystème Forestier ; Perturbation ; Gestion Des Forêts ; Forêt Mixte ; Ecology
    Source: Hyper Article en Ligne (CCSd)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Perspectives in Plant Ecology, Evolution and Systematics, 20 October 2013, Vol.15(5), pp.281-291
    Description: One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient.
    Keywords: Fundiveurope ; Biodiversity ; Ecosystem Functioning ; Tree Species Diversity ; Multifunctionality ; Multidiversity ; Botany
    ISSN: 1433-8319
    E-ISSN: 1618-0437
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages