Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Health Reference Center Academic (Gale)  (66)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Nature, 03 December 2015, Vol.528(7580), pp.93-8
    Description: Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.
    Keywords: Astrocytoma -- Pathology ; Brain Neoplasms -- Pathology ; Gap Junctions -- Metabolism
    ISSN: 00280836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2011, Vol.478(7368), p.197
    Description: Activation of the aryl hydrocarbon receptor (AHR) by environmental xenobiotic toxic chemicals, for instance 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), has been implicated in a variety of cellular processes such as embryogenesis, transformation, tumorigenesis and inflammation. But the identity of an endogenous ligand activating the AHR under physiological conditions in the absence of environmental toxic chemicals is still unknown. Here we identify the tryptophan (Trp) catabolite kynurenine (Kyn) as an endogenous ligand of the human AHR that is constitutively generated by human tumour cells via tryptophan-2,3-dioxygenase (TDO), a liver- and neuron-derived Trp-degrading enzyme not yet implicated in cancer biology. TDO-derived Kyn suppresses antitumour immune responses and promotes tumour-cell survival and motility through the AHR in an autocrine/paracrine fashion. The TDO-AHR pathway is active in human brain tumours and is associated with malignant progression and poor survival. Because Kyn is produced during cancer progression and inflammation in the local microenvironment in amounts sufficient for activating the human AHR, these results provide evidence for a previously unidentified pathophysiological function of the AHR with profound implications for cancer and immune biology.
    Keywords: Sciences (General) ; Physics;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, 2018
    Description: Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
    Keywords: DNA Methylation ; Central Nervous System Neoplasms -- Diagnosis;
    ISSN: 0028-0836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS ONE, 2011, Vol.6(5), p.e19823
    Description: 1-methyl-D-tryptophan (1-D-MT) is currently being used in clinical trials in patients with relapsed or refractory solid tumors with the aim of inhibiting indoleamine-2,3-dioxygenase (IDO)-mediated tumor immune escape. IDO is expressed in tumors and tumor-draining lymph nodes and degrades tryptophan (trp) to create an immunsuppressive micromilieu both by depleting trp and by accumulating immunosuppressive metabolites of the kynurenine (kyn) pathway. Here we show that proliferation of alloreactive T-cells cocultured with IDO1-positive human cancer cells paradoxically was inhibited by 1-D-MT. Surprisingly incubation with 1-D-MT increased kyn production of human cancer cells. Cell-free assays revealed that 1-D-MT did not alter IDO1 enzymatic activity. Instead, 1-D-MT induced IDO1 mRNA and protein expression through pathways involving p38 MAPK and JNK signalling. Treatment of cancer patients with 1-D-MT has transcriptional effects that may promote rather than suppress anti-tumor immune escape by increasing IDO1 in the cancer cells. These off-target effects should be carefully analyzed in the ongoing clinical trials with 1-D-MT.
    Keywords: Research Article ; Biology ; Chemistry ; Medicine ; Immunology ; Chemistry ; Molecular Biology ; Oncology ; Pharmacology ; Biochemistry
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature, 2014
    Description: Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas (1-3) and other types of tumour (4-6). They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG) (7,8), genomic hypermethylation (9-11), genetic instability and malignant transformation (12). More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells (13,14). Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific [CD4.sup.+] T-helper-1 ([T.sub.H]1) responses. [CD4.sup.+] [T.sub.H]1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a [CD4.sup.+] T-cell-dependent manner. As IDH1(R132H) is presentin all tumour cells of these slow-growing gliomas (15), a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.
    Keywords: Gene Mutation -- Identification And Classification ; Drug Targeting -- Research ; Gliomas -- Care And Treatment ; Gliomas -- Development And Progression ; Oxidoreductases -- Health Aspects ; Immune Response -- Research ; Cancer Research;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: PLoS ONE, 01 January 2015, Vol.10(3), p.e0121220
    Description: To explore the correlation between Nuclear Overhauser Enhancement (NOE)-mediated signals and tumor cellularity in glioblastoma utilizing the apparent diffusion coefficient (ADC) and cell density from histologic specimens. NOE is one type of chemical exchange saturation transfer (CEST) that originates from mobile macromolecules such as proteins and might be associated with tumor cellularity via altered protein synthesis in proliferating cells.For 15 patients with newly diagnosed glioblastoma, NOE-mediated CEST-contrast was acquired at 7 Tesla (asymmetric magnetization transfer ratio (MTRasym) at 3.3ppm, B1 = 0.7 μT). Contrast enhanced T1 (CE-T1), T2 and diffusion-weighted MRI (DWI) were acquired at 3 Tesla and coregistered. The T2 edema and the CE-T1 tumor were segmented. ADC and MTRasym values within both regions of interest were correlated voxelwise yielding the correlation coefficient rSpearman (rSp). In three patients who underwent stereotactic biopsy, cell density of 12 specimens per patient was correlated with corresponding MTRasym and ADC values of the biopsy site.Eight of 15 patients showed a weak or moderate positive correlation of MTRasym and ADC within the T2 edema (0.16≤rSp≤0.53, p〈0.05). Seven correlations were statistically insignificant (p〉0.05, n = 4) or yielded rSp≈0 (p〈0.05, n = 3). No trend towards a correlation between MTRasym and ADC was found in CE-T1 tumor (-0.31〈rSp〈0.28, p〈0.05, n = 9; p〉0.05, n = 6). The biopsy-analysis within CE-T1 tumor revealed a strong positive correlation between tumor cellularity and MTRasym values in two of the three patients (rSppatient3 = 0.69 and rSppatient15 = 0.87, p〈0.05), while the correlation of ADC and cellularity was heterogeneous (rSppatient3 = 0.545 (p = 0.067), rSppatient4 = -0.021 (p = 0.948), rSppatient15 = -0.755 (p = 0.005)).NOE-imaging is a new contrast promising insight into pathophysiologic processes in glioblastoma regarding cell density and protein content, setting itself apart from DWI. Future studies might be based on the assumption that NOE-mediated CEST visualizes cellularity more accurately than ADC, especially in the CE-T1 tumor region.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Nature medicine, August 2018, Vol.24(8), pp.1192-1203
    Description: The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.
    Keywords: Immunity ; Glutarates -- Metabolism ; T-Lymphocytes -- Immunology
    ISSN: 10788956
    E-ISSN: 1546-170X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: 2012, Vol.7(10), p.e47663
    Description: Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the Polycomb-repressive complex 2 (PRC2) that epigenetically silences gene transcription through histone H3 lysine trimethylation (H3K27me3). EZH2 has been implicated in stem cell maintenance and is overexpressed in hematological and solid malignancie`s including malignant glioma. EZH2 is thought to promote tumor progression by silencing tumor suppressor genes. Hence pharmacological disruption of the PRC2 is an attractive therapeutic strategy for cancer treatment. Here we show that EZH2 is expressed in human glioma and correlates with malignancy. Silencing of EZH2 reduced glioma cell proliferation and invasiveness. While we did not observe induction of cell cycle-associated tumor suppressor genes by silencing or pharmacological inhibition of EZH2, microarray analyses demonstrated a strong transcriptional reduction of the AXL receptor kinase. Neither histone nor DNA methylation appeared to be involved in the positive regulation of AXL by EZH2. Silencing AXL mimicked the antiinvasive effects of EZH2 knockdown. Finally, AXL expression is found in human gliomas with high EZH2 expression. Collectively these data suggest that EZH2 drives glioma invasiveness via transcriptional control of AXL independent of histone or DNA methylation.
    Keywords: Research Article ; Biology ; Medicine ; Genetics And Genomics ; Molecular Biology ; Computational Biology ; Oncology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Acta Neuropathologica, 2015, Vol.129(1), pp.155-155
    Keywords: Astrocytoma -- Classification ; Brain Neoplasms -- Classification ; Oligodendroglioma -- Classification;
    ISSN: 0001-6322
    E-ISSN: 1432-0533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: PLoS ONE, 01 January 2013, Vol.8(3), p.e57924
    Description: OBJECTIVES: The application of susceptibility weighted imaging (SWI) in brain tumor imaging is mainly used to assess tumor-related "susceptibility based signals" (SBS). The origin of SBS in glioblastoma is still unknown, potentially representing calcifications or blood depositions. Reliable differentiation between both entities may be important to evaluate treatment response and to identify glioblastoma with oligodendroglial components that are supposed to present calcifications. Since calcifications and blood deposits are difficult to differentiate using conventional MRI, we investigated whether a new post-processing approach, quantitative susceptibility mapping (QSM), is able to distinguish between both entities reliably. MATERIALS AND METHODS: SWI, FLAIR, and T1-w images were acquired from 46 patients with glioblastoma (14 newly diagnosed, 24 treated with radiochemotherapy, 8 treated with radiochemotherapy and additional anti-angiogenic medication). Susceptibility maps were calculated from SWI data. All glioblastoma were evaluated for the appearance of hypointense or hyperintense correlates of SBS on the susceptibility maps. RESULTS: 43 of 46 glioblastoma presented only hyperintense intratumoral SBS on susceptibility maps, indicating blood deposits. Additional hypointense correlates of tumor-related SBS on susceptibility maps, indicating calcification, were identified in 2 patients being treated with radiochemotherapy and in one patient being treated with additional anti-angiogenic medication. Histopathologic reports revealed an oligodendroglial component in one patient that presented calcifications on susceptibility maps. CONCLUSIONS: QSM provides a quantitative, local MRI contrast, which reliably differentiates between blood deposits and calcifications. Thus, quantitative susceptibility mapping appears promising to identify rare variants of glioblastoma with oligodendroglial components non-invasively and may allow monitoring the role of calcification in the context of different therapy regimes.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages