Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), April 2019, pp.485-488
    Description: Melanoma is the most deadly form of skin cancer worldwide. Many efforts have been made for early detection of melanoma with deep learning based on dermoscopic images. It is crucial to identify the specific lesion patterns for accurate diagnosis of melanoma. However, the common lesion patterns are not consistently present and cause sparse label problems in the data. In this paper, we propose a multi-task U-Net model to automatically detect lesion attributes of melanoma. The network includes two tasks, one is the classification task to classify if the lesion attributes present, and the other is the segmentation task to segment the attributes in the images. Our multi-task U-Net model achieves a Jaccard index of 0.433 on official test data of ISIC 2018 Challenges task 2, which ranks the 5th place on the final leaderboard.
    Keywords: Skin ; Lesions ; Task Analysis ; Melanoma ; Image Segmentation ; Head ; Deep Learning ; Skin Cancer ; Melanoma ; Deep Learning ; Multi-Task Learning ; U-Net
    E-ISSN: 1945-8452
    Source: IEEE Conference Publications
    Source: IEEE Xplore
    Source: IEEE Journals & Magazines 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages