Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals.ASM.org (American Society of Microbiology)  (35)
  • 1
    Language: English
    In: Infection and immunity, December 2012, Vol.80(12), pp.4426-34
    Description: During microbial infection, macrophages are polarized to classically activated (M1) or alternatively activated (M2) cells in response to microbial components and host immune mediators. Proper polarization of macrophages is critical for bacterial clearance. To study the role of macrophage polarization during Haemophilus ducreyi infection, we analyzed a panel of macrophage surface markers in skin biopsy specimens of pustules obtained from experimentally infected volunteers. Lesional macrophages expressed markers characteristic of both M1 and M2 polarization. Monocyte-derived macrophages (MDM) also expressed a mixed M1 and M2 profile of surface markers and cytokines/chemokines upon infection with H. ducreyi in vitro. Endogenous interleukin 10 (IL-10) produced by infected MDM downregulated and enhanced expression of several M1 and M2 markers, respectively. Bacterial uptake, mediated mainly by class A scavenger receptors, and activation of mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways were required for H. ducreyi-induced IL-10 production in MDM. Compared to M1 cells, IL-10-polarized M2 cells displayed enhanced phagocytic activity against H. ducreyi and similar bacterial killing. Thus, IL-10-modulated macrophage polarization may contribute to H. ducreyi clearance during human infection.
    Keywords: Chancroid -- Immunology ; Haemophilus Ducreyi -- Immunology ; Interleukin-10 -- Immunology ; Macrophage Activation -- Immunology ; Macrophages -- Classification
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Infection and immunity, August 2013, Vol.81(8), pp.2997-3008
    Description: Recognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whether Haemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). Although H. ducreyi is predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated in H. ducreyi-infected skin. Infection of MDM with live, but not heat-killed, H. ducreyi induced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage of H. ducreyi uptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K(+) efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited by H. ducreyi. Our study data indicate that H. ducreyi induces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.
    Keywords: Carrier Proteins -- Immunology ; Chancroid -- Immunology ; Inflammasomes -- Immunology ; Macrophage Activation -- Immunology ; Macrophages -- Immunology
    ISSN: 00199567
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Infection and immunity, February 2013, Vol.81(2), pp.608-17
    Description: The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.
    Keywords: Bacterial Proteins -- Metabolism ; Carbon -- Metabolism ; Chancroid -- Metabolism ; Haemophilus Ducreyi -- Metabolism
    ISSN: 00199567
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Infection and Immunity, 2012, Vol. 80(2), p.679
    Description: Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.
    Keywords: Bacterial Proteins -- Metabolism ; Chancroid -- Microbiology ; Haemophilus Ducreyi -- Metabolism ; Lipopolysaccharides -- Metabolism ; N-Acetylneuraminic Acid -- Metabolism;
    ISSN: 1098-5522
    ISSN: 10985522
    ISSN: 00199567
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Infection and immunity, November 2013, Vol.81(11), pp.4160-70
    Description: Expression of the lspB-lspA2 operon encoding a virulence-related two-partner secretion system in Haemophilus ducreyi 35000HP is directly regulated by the CpxRA regulatory system (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, we show that this secretion system is also regulated by the small nucleoid-associated protein Fis. Inactivation of the H. ducreyi fis gene resulted in a reduction in expression of both the H. ducreyi LspB and LspA2 proteins. DNA microarray experiments showed that a H. ducreyi fis deletion mutant exhibited altered expression levels of genes encoding other important H. ducreyi virulence factors, including DsrA and Flp1, suggesting a possible global role for Fis in the control of virulence in this obligate human pathogen. While the H. ducreyi Fis protein has a high degree of sequence and structural similarity to the Fis proteins of other bacteria, its temporal pattern of expression was very different from that of enterobacterial Fis proteins. The use of a lacZ-based transcriptional reporter provided evidence which indicated that the H. ducreyi Fis homolog is a positive regulator of gyrB, a gene that is negatively regulated by Fis in enteric bacteria. Taken together, the Fis protein expression data and the observed regulatory effects of Fis in H. ducreyi suggest that this small DNA binding protein has a regulatory role in H. ducreyi which may differ in substantial ways from that of other Fis proteins.
    Keywords: Gene Expression Regulation, Bacterial ; Operon ; Bacterial Outer Membrane Proteins -- Biosynthesis ; Bacterial Proteins -- Biosynthesis ; Factor For Inversion Stimulation Protein -- Metabolism ; Haemophilus Ducreyi -- Genetics
    ISSN: 00199567
    E-ISSN: 1098-5522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Infection and Immunity, 2010, Vol. 78(9), p.3898
    ISSN: 0019-9567
    ISSN: 00199567
    Source: American Society of Microbiology
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Infection and Immunity, 2010, Vol. 78(3), p.1176
    Description: Haemophilus ducreyi is an extracellular pathogen of human epithelial surfaces that resists human antimicrobial peptides (APs). The organism's genome contains homologs of genes sensitive to antimicrobial peptides (sap operon) in nontypeable Haemophilus influenzae. In this study, we characterized the sap-containing loci of H. ducreyi 35000HP and demonstrated that sapA is expressed in broth cultures and H. ducreyi-infected tissue; sapA is also conserved among both class I and class II H. ducreyi strains. We constructed a nonpolar sapA mutant of H. ducreyi 35000HP, designated 35000HPsapA, and compared the percent survival of wild-type 35000HP and 35000HPsapA exposed to several human APs, including alpha-defensins, beta-defensins, and the cathelicidin LL-37. Unlike an H. influenzae sapA mutant, strain 35000HPsapA was not more susceptible to defensins than strain 35000HP was. However, we observed a significant decrease in the survival of strain 35000HPsapA after exposure to LL-37, which was complemented by introducing sapA in trans. Thus, the Sap transporter plays a role in resistance of H. ducreyi to LL-37. We next compared mutant strain 35000HPsapA with strain 35000HP for their ability to cause disease in human volunteers. Although both strains caused papules to form at similar rates, the pustule formation rate at sites inoculated with 35000HPsapA was significantly lower than that of sites inoculated with 35000HP (33.3% versus 66.7%; P = 0.007). Together, these data establish that SapA acts as a virulence factor and as one mechanism for H. ducreyi to resist killing by antimicrobial peptides. To our knowledge, this is the first demonstration that an antimicrobial peptide resistance mechanism contributes to bacterial virulence in humans.
    Keywords: Medicine ; Biology;
    ISSN: 0019-9567
    ISSN: 00199567
    E-ISSN: 10985522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Infection and Immunity, 2001, Vol. 69(3), p.1483
    Description: Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyi were subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, and lspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis.
    Keywords: Haemophilus Ducreyi ; Haemophilus Ducreyi ; Volunteers ; Mutants ; Virulence ; Gene Expression ; Reverse Transcription ; Polymerase Chain Reaction ; Volunteers ; Mutants ; Virulence ; Gene Expression ; Reverse Transcription ; Polymerase Chain Reaction ; Momp Gene ; Ftpa Gene ; Losb Gene ; Lst Gene ; Cdtc Gene ; Hhdb Gene ; Ompa2 Gene ; Tdha Gene ; Lspa1 Gene ; Lspa2 Gene ; Momp Gene ; Ftpa Gene ; Losb Gene ; Lst Gene ; Cdtc Gene ; Hhdb Gene ; Ompa2 Gene ; Tdha Gene ; Lspa1 Gene ; Lspa2 Gene ; Antigenic Properties and Virulence ; Bacterial Genetics ; Cdtc Gene ; Ftpa Gene ; Hhdb Gene ; Losb Gene ; Lspa1 Gene ; Lspa2 Gene ; Lst Gene ; Momp Gene ; Ompa2 Gene ; Tdha Gene;
    ISSN: 0019-9567
    ISSN: 00199567
    E-ISSN: 10985522
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Bacteriology, Feb, 1996, Vol.178(3-4), p.808(9)
    Description: A study was conducted to determine the role of the pili expressed by Haemophilus ducreyi in the pathogenesis of the genital ulcer disease chancroid. A gene encoding the 24K protein of fine, tangled pili, termed ftpA, was isolated and examined by molecular techniques. The results showed that the FtpA protein lacked homology with other pilins, but shared homoloy with proteins that polymerize ordered rings in Escherichia coli and Treponema pallidum.
    Keywords: Hemophilus Infections -- Genetic Aspects
    ISSN: 0021-9193
    E-ISSN: 10985530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Infection and Immunity, 2000, Vol. 68(4), p.2309
    ISSN: 0019-9567
    ISSN: 00199567
    Source: American Society of Microbiology
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages