Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MEDLINE/PubMed (NLM)  (18)
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.3-19
    Description: Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
    Keywords: Transport ; Aggregation ; Analytics ; Environment ; Aging ; Ecotoxicology ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 01 January 2016, Vol.11(7), p.e0159948
    Description: Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.1-2
    Keywords: Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.113-121
    Description: Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the relevant processes.
    Keywords: Air–Water Interface ; Solid–Water Interface ; Engineered Nanoparticle ; Extended Dlvo Theory ; Unsaturated Flow ; Pore Structure ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: New Phytologist, November 2011, Vol.192(3), pp.653-663
    Description: • Despite the importance of rhizosphere properties for water flow from soil to roots, there is limited quantitative information on the distribution of water in the rhizosphere of plants. • Here, we used neutron tomography to quantify and visualize the water content in the rhizosphere of the plant species chickpea (Cicer arietinum), white lupin (Lupinus albus), and maize (Zea mays) 12 d after planting. • We clearly observed increasing soil water contents (θ) towards the root surface for all three plant species, as opposed to the usual assumption of decreasing water content. This was true for tap roots and lateral roots of both upper and lower parts of the root system. Furthermore, water gradients around the lower part of the roots were smaller and extended further into bulk soil compared with the upper part, where the gradients in water content were steeper. • Incorporating the hydraulic conductivity and water retention parameters of the rhizosphere into our model, we could simulate the gradual changes of θ towards the root surface, in agreement with the observations. The modelling result suggests that roots in their rhizosphere may modify the hydraulic properties of soil in a way that improves uptake under dry conditions.
    Keywords: Extent Of Rhizosphere ; Modelling ; Neutron Tomography ; Rhizosphere Hydraulic Properties ; Root Water Uptake ; Soil Moisture Profile ; Water Distribution
    ISSN: 0028-646X
    E-ISSN: 1469-8137
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Science of the Total Environment, 15 December 2018, Vol.645, pp.192-204
    Description: Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.
    Keywords: Heteroaggregation ; Nanoparticle Transformation ; Breakthrough ; Mobility ; Reversibility ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Nature, 22 February 2018, Vol.554(7693), pp.423
    Keywords: Soil ; Plant Roots -- Chemistry
    ISSN: 00280836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of Contaminant Hydrology, December 2016, Vol.195, pp.31-39
    Description: Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting “soil-aged” Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH = 5 and pH = 9. The soil-aged Ag NP were less mobile at pH = 5 than at pH = 9 due to lower electrostatic repulsion at pH = 5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (〉 90 ) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces.
    Keywords: Unsaturated Transport ; Water Dynamics ; Cation Bridging ; Amphiphilic ; Edlvo ; Engineering ; Environmental Sciences ; Geography
    ISSN: 0169-7722
    E-ISSN: 1873-6009
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Frontiers in Microbiology, 01 August 2018, Vol.9
    Description: Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
    Keywords: Soil Microbiology ; Biodiversity ; Upscaling ; Tomography ; X-Ray Computed ; Nanosims Imaging ; Biology
    E-ISSN: 1664-302X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: The Journal of infectious diseases, 01 March 2011, Vol.203(5), pp.595-601
    Description: Recently, a IL28B (rs 12979860) gene polymorphism was identified as a predictor for response to hepatitis C virus-specific treatment in human immunodeficiency virus (HIV)-uninfected and -infected patients with chronic hepatitis C. In an analysis of HIV-infected patients with acute hepatitis C, we found that the IL28B genotype was associated with serum levels of hepatitis C virus RNA, g-GT, and CD4 cell count. In contrast to HIV-infected patients with chronic hepatitis C, the IL28B genotype was not significantly associated with treatment response rates in patients with acute hepatitis C. Thus, effects of the IL28B single-nucleotide polymorphism may differ in HIV-infected patients with chronic and acute hepatitis C.
    Keywords: Polymorphism, Single Nucleotide ; HIV Infections -- Complications ; Hepatitis C -- Genetics ; Interleukins -- Genetics
    ISSN: 00221899
    E-ISSN: 1537-6613
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages