Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Article  (25)
  • Nature Publishing Group (CrossRef)  (25)
Type of Medium
  • Article  (25)
Language
Year
  • 1
    Language: English
    In: Nature, 28 January 2016, Vol.529(7587), pp.496-501
    Description: Bacteria express many small RNAs for which the regulatory roles in pathogenesis have remained poorly understood due to a paucity of robust phenotypes in standard virulence assays. Here we use a generic 'dual RNA-seq' approach to profile RNA expression simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and reveal the molecular impact of bacterial riboregulators. We identify a PhoP-activated small RNA, PinT, which upon bacterial internalization temporally controls the expression of both invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity causes pervasive changes in coding and noncoding transcripts of the host. Interspecies correlation analysis links PinT to host cell JAK-STAT signalling, and we identify infection-specific alterations in multiple long noncoding RNAs. Our study provides a paradigm for a sensitive RNA-based analysis of intracellular bacterial pathogens and their hosts without physical separation, as well as a new discovery route for hidden functions of pathogen genes.
    Keywords: Gene Expression Regulation -- Genetics ; Host-Pathogen Interactions -- Genetics ; RNA, Bacterial -- Genetics ; RNA, Untranslated -- Genetics ; Salmonella Typhimurium -- Genetics
    ISSN: 00280836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2011, Vol.471(7340), p.602
    Description: CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans -encoded small RNA with 24 nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.
    Keywords: Article;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: EMBO Journal, 03 July 2013, Vol.32(13), pp.1802-1804
    Description: CRISPR systems not only defend bacteria from foreign DNA but also contribute to pathogenicity, by regulating endogenous gene expression to evade host innate immune responses.
    Keywords: Animals–Immunology ; Female–Pathogenicity ; Gammaproteobacteria–Immunology ; Gammaproteobacteria–Immunology ; Immune Evasion–Immunology ; Immunity, Innate–Immunology ; Germany ; Prokaryotes ; Gene Expression ; Eukaryotes ; Bacteria ; Molecular Biology;
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: EMBO Journal, 17 October 2012, Vol.31(20), pp.4005-4019
    Description: The small RNAs associated with the protein Hfq constitute one of the largest classes of post‐transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free‐standing genes. Here, deep sequencing of Hfq‐bound transcripts from multiple stages of growth of revealed a plethora of new small RNA species from within mRNA loci, including DapZ, which overlaps with the 3′ region of the biosynthetic gene, . Synthesis of the DapZ small RNA is independent of DapB protein synthesis, and is controlled by HilD, the master regulator of invasion genes. DapZ carries a short G/U‐rich domain similar to that of the globally acting GcvB small RNA, and uses GcvB‐like seed pairing to repress translation of the major ABC transporters, DppA and OppA. This exemplifies double functional output from an mRNA locus by the production of both a protein and an Hfq‐dependent ‐acting RNA. Our atlas of Hfq targets suggests that the 3′ regions of mRNA genes constitute a rich reservoir that provides the Hfq network with new regulatory small RNAs. Deep sequencing of Hfq‐binding RNAs isolated from at different growth stages reveals that the 3′ UTR of bacterial mRNAs are a rich source of regulatory small RNAs which modulate gene expression in trans.
    Keywords: Abc Transporter ; Dapz ; Gcvb ; Hfq ; 3′ Utr
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: EMBO Journal, 13 November 2013, Vol.32(22), pp.2963-2979
    Description: Small RNAs use a diversity of well‐characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq‐associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation‐independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of mRNA (encoding cyclopropane fatty acid synthase) in . Target activation is achieved through seed pairing of the pseudoknot‐exposed, conserved 5′ end of RydC to an upstream region of the mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E‐mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA‐controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. The small RNA RydC stabilizes target mRNAs in a translation‐independent manner through base pairing to the 5′UTR, blocking RNase E access. Cyclopropane fatty acid synthase is a target for RydC, providing the first link between sRNA regulation and membrane biosynthesis in bacteria.
    Keywords: Fatty Acid Synthesis ; Hfq ; Mrna Activation ; Noncoding Rna ; Small Rna
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Nature, November 2018, Vol.563(7729), pp.121-125
    Description: Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.
    Keywords: Antigenic Variation -- Genetics ; Chromatin -- Genetics ; DNA, Protozoan -- Metabolism ; Genome -- Genetics ; Trypanosoma Brucei Brucei -- Genetics
    ISSN: 00280836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature, 2010, Vol.464(7286), p.250
    Description: Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.
    Keywords: Gene Expression Profiling ; Genome, Bacterial -- Genetics ; Helicobacter Infections -- Microbiology ; Helicobacter Pylori -- Genetics ; RNA, Bacterial -- Genetics;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: EMBO Journal, 18 May 2011, Vol.30(10), pp.1977-1989
    Description: MicroRNAs have well‐established roles in eukaryotic host responses to viruses and extracellular bacterial pathogens. In contrast, microRNA responses to invasive bacteria have remained unknown. Here, we report cell type‐dependent microRNA regulations upon infection of mammalian cells with the enteroinvasive pathogen, Typhimurium. Murine macrophages strongly upregulate NF‐κB associated microRNAs; strikingly, these regulations which are induced by bacterial lipopolysaccharide (LPS) occur and persist regardless of successful host invasion and/or replication, or whether an inflammatory response is mounted, suggesting that microRNAs belong to the first line of anti‐bacterial defence. However, a suppression of the global immune regulator miR‐155 in endotoxin‐tolerant macrophages revealed that microRNA responses also depend on the status of infected cells. This study identifies the family as the common denominator of ‐regulated microRNAs in macrophages and epithelial cells, and suggests that repression of relieves cytokine IL‐6 and IL‐10 mRNAs from negative post‐transcriptional control. Our results establish a paradigm of microRNA‐mediated feed‐forward activation of inflammatory factors when mammalian cells are targeted by bacterial pathogens. This study describes the global mammalian micoRNA response to infection and the role of miRNAs in regulating the post‐transcriptional control of inflammatory cytokines.
    Keywords: Il‐10 ; Let‐7 ; Mir‐155 ; Mirna ; Salmonella
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Reviews Microbiology, 2011, Vol.9(8), p.578
    Description: Hfq is an RNA-binding protein that is common to diverse bacterial lineages and has key roles in the control of gene expression. By facilitating the pairing of small RNAs with their target mRNAs, Hfq affects the translation and turnover rates of specific transcripts and contributes to complex post-transcriptional networks. These functions of Hfq can be attributed to its ring-like oligomeric architecture, which presents two non-equivalent binding surfaces that are capable of multiple interactions with RNA molecules. Distant homologues of Hfq occur in archaea and eukaryotes, reflecting an ancient origin for the protein family and hinting at shared functions. In this Review, we describe the salient structural and functional features of Hfq and discuss possible mechanisms by which this protein can promote RNA interactions to catalyse specific and rapid regulatory responses in vivo.
    Keywords: Biology;
    ISSN: 1740-1526
    E-ISSN: 17401534
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Nature Reviews Microbiology, 2018, Vol.16(10), pp.601-615
    Description: RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over...
    Keywords: Medical And Health Sciences ; Basic Medicine ; Microbiology In The Medical Area ; Medicin Och Hälsovetenskap ; Medicinska Och Farmaceutiska Grundvetenskaper ; Mikrobiologi Inom Det Medicinska Området
    ISSN: 1740-1526
    E-ISSN: 17401534
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages