Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Ecker, J., I. Oehme, R. Mazitschek, A. Korshunov, M. Kool, T. Hielscher, J. Kiss, et al. 2015. “Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma.” Acta Neuropathologica Communications 3 (1): 22. doi:10.1186/s40478-015-0201-7. http://dx.doi.org/10.1186/s40478-015-0201-7.
    Description: Introduction: Medulloblastoma (MB) is the most frequent malignant brain tumor in children. Four subgroups with distinct genetic, epigenetic and clinical characteristics have been identified. Survival remains particularly poor in patients with Group 3 tumors harbouring a MYC amplification. We herein explore the molecular mechanisms and translational implications of class I histone deacetylase (HDAC) inhibition in MYC driven MBs. Material and Methods Expression of HDACs in primary MB subgroups was compared to normal brain tissue. A panel of MB cell lines, including Group 3 MYC amplified cell lines, were used as model systems. Cells were treated with HDAC inhibitors (HDACi) selectively targeting class I or IIa HDACs. Depletion of HDAC2 was performed. Intracellular HDAC activity, cellular viability, metabolic activity, caspase activity, cell cycle progression, RNA and protein expression were analyzed. Results: HDAC2 was found to be overexpressed in MB subgroups with poor prognosis (SHH, Group 3 and Group 4) compared to normal brain and the WNT subgroup. Inhibition of the enzymatic activity of the class I HDACs reduced metabolic activity, cell number, and viability in contrast to inhibition of class IIa HDACs. Increased sensitivity to HDACi was specifically observed in MYC amplified cells. Depletion of HDAC2 increased H4 acetylation and induced cell death. Simulation of clinical pharmacokinetics showed time-dependent on target activity that correlated with binding kinetics of HDACi compounds. Conclusions: We conclude that HDAC2 is a valid drug target in patients with MYC amplified MB. HDACi should cover HDAC2 in their inhibitory profile and timing and dosing regimen in clinical trials should take binding kinetics of compounds into consideration. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0201-7) contains supplementary material, which is available to authorized users.
    Keywords: Medulloblastoma ; Hdac ; Hdac Inhibitor ; Hdac2 ; Myc
    ISSN: 2051-5960
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2018
    Description: Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
    Keywords: DNA Methylation ; Central Nervous System Neoplasms -- Diagnosis;
    ISSN: 0028-0836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Brain Pathology, July 2016, Vol.26(4), pp.506-516
    Description: The “pediatric targeted therapy” (PTT) program aims to identify the presence and activity of druggable targets and evaluate the clinical benefit of a personalized treatment approach in relapsed or progressive tumors on an individual basis. 10 markers (HDAC2, HR23B, p‐AKT, p‐ERK, p‐S6, p‐EGFR, PDGFR‐alpha/beta, p53 and BRAFV600E) were analyzed by immunohistochemistry. Pediatric patients with tumors independent of the histological diagnosis, with relapse or progression after treatment according to standard protocols were included.  = 61/145 (42%) cases were eligible for analysis between 2009 and 2013, the most common entities being brain tumors. Immunohistochemical stainings were evaluated by the ‐Score (0–300). In 93% of the cases potentially actionable targets were identified. The expressed or activated pathways were histone deacetylase (HDACs; 83.0% of cases positive), EGFR (87.2%), PDGFR (75.9%), p53 (50.0%), MAPK/ERK (43.3%) and PI3K/mTOR (36.1%). Follow‐up revealed partial or full implementation of PTT results in treatment decision‐making in 41% of the cases. Prolonged disease stabilization responses in single cases were noticed, however, response rates did not differ from cases treated with other modalities. Further studies evaluating the feasibility and clinical benefit of personalized diagnostic approaches using paraffin material are warranted.
    Keywords: Brain Tumors ; Pediatric Oncology ; Personalized Medicine ; Targeted Therapy ; Relapsed Childhood Tumors ; Predictive Markers
    ISSN: 1015-6305
    E-ISSN: 1750-3639
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Acta Neuropathologica, 2016, Vol.131(6), pp.903-910
    Description: With the number of prognostic and predictive genetic markers in neuro-oncology steadily growing, the need for comprehensive molecular analysis of neuropathology samples has vastly increased. We therefore developed a customized enrichment/hybrid-capture-based next-generation sequencing (NGS) gene panel comprising the entire coding and selected intronic and promoter regions of 130 genes recurrently altered in brain tumors, allowing for the detection of single nucleotide variations, fusions, and copy number aberrations. Optimization of probe design, library generation and sequencing conditions on 150 samples resulted in a 5-workday routine workflow from the formalin-fixed paraffin-embedded sample to neuropathological report. This protocol was applied to 79 retrospective cases with established molecular aberrations for validation and 71 prospective cases for discovery of potential therapeutic targets. Concordance of NGS compared to established, single biomarker methods was 98.0 %, with discrepancies resulting from one case where a TERT promoter mutation was not called by NGS and three ATRX mutations not being detected by Sanger sequencing. Importantly, in samples with low tumor cell content, NGS was able to identify mutant alleles that were not detectable by traditional methods. Information derived from NGS data identified potential targets for experimental therapy in 37/47 (79 %) glioblastomas, 9/10 (90 %) pilocytic astrocytomas, and 5/14 (36 %) medulloblastomas in the prospective target discovery cohort. In conclusion, we present the settings for high-throughput, adaptive next-generation sequencing in routine neuropathology diagnostics. Such an approach will likely become highly valuable in the near future for treatment decision making, as more therapeutic targets emerge and genetic information enters the classification of brain tumors.
    Keywords: Medicine & Public Health ; Pathology ; Neurosciences ; Medicine;
    ISSN: 0001-6322
    E-ISSN: 1432-0533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages