Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Article  (21)
  • Salmonella
  • OneFile (GALE)  (21)
Type of Medium
  • Article  (21)
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 25 August 2015, Vol.112(34), pp.E4772-81
    Description: Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.
    Keywords: Hfq ; Rpra ; Feedforward Control ; Plasmid Conjugation ; Srna ; Chromosomes, Bacterial ; DNA, Bacterial -- Genetics ; RNA, Bacterial -- Genetics ; Salmonella -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 27 June 2017, Vol.114(26), pp.6824-6829
    Description: The functions of many bacterial RNA-binding proteins remain obscure because of a lack of knowledge of their cellular ligands. Although well-studied cold-shock protein A (CspA) family members are induced and function at low temperature, others are highly expressed in infection-relevant conditions. Here, we have profiled transcripts bound in vivo by the CspA family members of serovar Typhimurium to link the constitutively expressed CspC and CspE proteins with virulence pathways. Phenotypic assays in vitro demonstrated a crucial role for these proteins in membrane stress, motility, and biofilm formation. Moreover, double deletion of and fully attenuates in systemic mouse infection. In other words, the RNA ligand-centric approach taken here overcomes a problematic molecular redundancy of CspC and CspE that likely explains why these proteins have evaded selection in previous virulence factor screens in animals. Our results highlight RNA-binding proteins as regulators of pathogenicity and potential targets of antimicrobial therapy. They also suggest that globally acting RNA-binding proteins are more common in bacteria than currently appreciated.
    Keywords: RNA-Binding Protein ; Salmonella ; Bacterial Pathogenesis ; Cold-Shock Protein ; Stress Response ; Bacterial Proteins ; Cold Shock Proteins and Peptides ; Heat-Shock Proteins ; RNA-Binding Proteins ; Salmonella Infections ; Salmonella Typhimurium ; Virulence Factors
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, 2011, Vol.6(3), p.e17296
    Description: P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella -induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri , arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.
    Keywords: Research Article ; Biology ; Medicine ; Infectious Diseases ; Microbiology ; Molecular Biology ; Cell Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 23 November 2010, Vol.107(47), pp.20435-40
    Description: The abundant class of bacterial Hfq-associated small regulatory RNAs (sRNAs) parallels animal microRNAs in their ability to control multiple genes at the posttranscriptional level by short and imperfect base pairing. In contrast to the universal length and seed pairing mechanism of microRNAs, the sRNAs are heterogeneous in size and structure, and how they regulate multiple targets is not well understood. This paper provides evidence that a 5' located sRNA domain is a critical element for the control of a large posttranscriptional regulon. We show that the conserved 5' end of RybB sRNA recognizes multiple mRNAs of Salmonella outer membrane proteins by ≥7-bp Watson-Crick pairing. When fused to an unrelated sRNA, the 5' domain is sufficient to guide target mRNA degradation and maintain σ(E)-dependent envelope homeostasis. RybB sites in mRNAs are often conserved and flanked by 3' adenosine. They are found in a wide sequence window ranging from the upstream untranslated region to the deep coding sequence, indicating that some targets might be repressed at the level of translation, whereas others are repressed primarily by mRNA destabilization. Autonomous 5' domains seem more common in sRNAs than appreciated and might improve the design of synthetic RNA regulators.
    Keywords: Bacterial Outer Membrane Proteins -- Metabolism ; Gene Expression Regulation, Bacterial -- Genetics ; RNA, Messenger -- Metabolism ; Regulatory Sequences, Ribonucleic Acid -- Genetics ; Regulon -- Genetics ; Salmonella -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science (New York, N.Y.), 07 December 2018, Vol.362(6419), pp.1156-1160
    Description: Many bacterial infections are hard to treat and tend to relapse, possibly due to the presence of antibiotic-tolerant persisters. In vitro, persister cells appear to be dormant. After uptake of species by macrophages, nongrowing persisters also occur, but their physiological state is poorly understood. In this work, we show that persisters arising during macrophage infection maintain a metabolically active state. Persisters reprogram macrophages by means of effectors secreted by the pathogenicity island 2 type 3 secretion system. These effectors dampened proinflammatory innate immune responses and induced anti-inflammatory macrophage polarization. Such reprogramming allowed nongrowing cells to survive for extended periods in their host. Persisters undermining host immune defenses might confer an advantage to the pathogen during relapse once antibiotic pressure is relieved.
    Keywords: Drug Resistance, Bacterial ; Host-Pathogen Interactions -- Immunology ; Macrophages -- Immunology ; Salmonella Infections -- Drug Therapy ; Salmonella Typhimurium -- Metabolism ; Type III Secretion Systems -- Metabolism
    ISSN: 00368075
    E-ISSN: 1095-9203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Nature, 28 January 2016, Vol.529(7587), pp.496-501
    Description: Bacteria express many small RNAs for which the regulatory roles in pathogenesis have remained poorly understood due to a paucity of robust phenotypes in standard virulence assays. Here we use a generic 'dual RNA-seq' approach to profile RNA expression simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and reveal the molecular impact of bacterial riboregulators. We identify a PhoP-activated small RNA, PinT, which upon bacterial internalization temporally controls the expression of both invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity causes pervasive changes in coding and noncoding transcripts of the host. Interspecies correlation analysis links PinT to host cell JAK-STAT signalling, and we identify infection-specific alterations in multiple long noncoding RNAs. Our study provides a paradigm for a sensitive RNA-based analysis of intracellular bacterial pathogens and their hosts without physical separation, as well as a new discovery route for hidden functions of pathogen genes.
    Keywords: Gene Expression Regulation -- Genetics ; Host-Pathogen Interactions -- Genetics ; RNA, Bacterial -- Genetics ; RNA, Untranslated -- Genetics ; Salmonella Typhimurium -- Genetics
    ISSN: 00280836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular Microbiology, September 2009, Vol.73(5), pp.737-741
    Description: Small regulatory RNAs (sRNAs) are well known to command bacterial protein synthesis by modulating the translation and decay of target mRNAs. Most sRNAs are specifically regulated by a cognate transcription factor under certain growth or stress conditions. Investigations of the conserved Hfq‐dependent MicM sRNA in (article by Poul Valentin‐Hansen and colleagues in this issue of ) and in have unravelled a novel type of gene regulation in which the chitobiose operon mRNA acts as an RNA trap to degrade the constitutively expressed MicM sRNA, thereby alleviating MicM‐mediated repression of the synthesis of the YbfM porin that is required for chitosugar uptake. The results suggest that ‘target’ mRNAs might be both prey and also predators of sRNAs.
    Keywords: Protein Synthesis ; Messenger Rna;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Microbiology, January 2009, Vol.71(1), pp.1-11
    Description: species are enterobacterial pathogens that have been exceptionally well investigated with respect to virulence mechanisms, microbial pathogenesis, genome evolution and many fundamental pathways of gene expression and metabolism. While these studies have traditionally focused on protein functions, has also become a model organism for RNA‐mediated regulation. The present review is dedicated to the non‐coding RNA world of : it covers small RNAs (sRNAs) that act as post‐transcriptional regulators of gene expression, novel Salmonella ‐regulatory RNA elements that sense metabolite and metal ion concentrations (or temperature), and globally acting RNA‐binding proteins such as CsrA or Hfq (inactivation of which cause drastic phenotypes and virulence defects). Owing to mosaic genome structure, some of the sRNAs are widely conserved in bacteria whereas others are very specific to species. Intriguingly, sRNAs of either type (CsrB/C, InvR, SgrS) facilitate cross‐talk between the core genome and its laterally acquired virulence regions. Work in also identified physiological functions (and mechanisms thereof) of RNA that had remained unknown in , and pioneered the use of high‐throughput sequencing technology to identify the sRNA and mRNA targets of bacterial RNA‐binding proteins.
    Keywords: Metabolites ; Proteins ; Messenger Rna ; Salmonella ; Gene Expression;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecular Microbiology, September 2011, Vol.81(5), pp.1144-1165
    Description: GcvB is one of the most highly conserved Hfq‐associated small RNAs in Gram‐negative bacteria and was previously reported to repress several ABC transporters for amino acids. To determine the full extent of GcvB‐mediated regulation in , we combined a genome‐wide experimental approach with biocomputational target prediction. Comparative pulse expression of wild‐type versus mutant sRNA variants revealed that GcvB governs a large post‐transcriptional regulon, impacting ∼1% of all genes via its conserved G/U‐rich domain R1. Complementary predictions of C/A‐rich binding sites in mRNAs and reporter fusion experiments increased the number of validated GcvB targets to more than 20, and doubled the number of regulated amino acid transporters. Unlike the previously described targeting via the single R1 domain, GcvB represses the glycine transporter CycA by exceptionally redundant base‐pairing. This novel ability of GcvB is focused upon the one target that could feedback‐regulate the glycine‐responsive synthesis of GcvB. Several newly discovered mRNA targets involved in amino acid metabolism, including the global regulator Lrp, question the previous assumption that GcvB simply acts to limit unnecessary amino acid uptake. Rather, GcvB rewires primary transcriptional control circuits and seems to act as a distinct regulatory node in amino acid metabolism.
    Keywords: Glycine -- Physiological Aspects ; Genetic Research -- Physiological Aspects ; Genomics -- Physiological Aspects ; Messenger Rna -- Physiological Aspects;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: PLoS Pathogens, 2017, Vol.13(2)
    Description: The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables “dual RNA-seq” studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique.
    Keywords: Review ; Biology And Life Sciences ; Research And Analysis Methods ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Research And Analysis Methods
    ISSN: 1553-7366
    E-ISSN: 1553-7374
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages