Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PMC (PubMed Central)  (20)
Type of Medium
Language
Year
  • 1
    Language: English
    In: PLoS ONE, 01 January 2015, Vol.10(8), p.e0136579
    Description: The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: PLoS ONE, 2015, Vol.10(5)
    Description: Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming) during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur , Q . petraea , Q . pubescens ) were tested on two different soil types (i.e. acidic and calcareous). Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat ( Q . pubescens ) compared to Q . robur and Q . petraea . Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity.
    Keywords: Research Article
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 09 June 2015, Vol.112(23), pp.7309-14
    Description: The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.
    Keywords: Akt ; Cipk ; Dionaea Muscipula ; Hak5 ; Transporter ; Calcium -- Metabolism ; Droseraceae -- Metabolism ; Potassium -- Metabolism ; Protein Kinases -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLoS ONE, 2014, Vol.9(12)
    Description: In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions.
    Keywords: Research Article ; Biology And Life Sciences ; Ecology And Environmental Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Experimental Botany, 2010, 2009, Vol. 61(4), pp.1065-1074
    Description: Glutathione (GSH) and ascorbate (ASC) are important antioxidants that are involved in stress defence and cell proliferation of meristematic root cells. In principle, synthesis of ASC and GSH in the roots as well as ASC and GSH transport from the shoot to the roots by phloem mass flow is possible. However, it is not yet known whether the ASC and/or the GSH level in roots depends on the supply from the shoot. This was analysed by feeding mature leaves with [ 14 C]ASC or [ 35 S]GSH and subsequent detection of the radiolabel in different root fractions. Quantitative dependency of root ASC and GSH on shoot-derived ASC and GSH was investigated with poplar ( Populus tremula × P. alba ) trees interrupted in phloem transport. [ 35 S]GSH is transported from mature leaves to the root tips, but is withdrawn from the phloem along the entire transport path. When phloem transport was interrupted, the GSH content in root tips halved within 3 d. [ 14 C]ASC is also transported from mature leaves to the root tips but, in contrast to GSH, ASC is not removed from the phloem along the transport path. Accordingly, ASC accumulates in root tips. Interruption of phloem transport disturbed the level and the ASC redox state within the entire root system. Diminished total ASC levels were attributed mainly to a decline of dehydroascorbate (DHA). As the redox state of ASC is of particular significance for root growth and development, it is concluded that phloem transport of ASC may constitute a shoot to root signal to coordinate growth and development at the whole plant level.
    Keywords: Ascorbate ; Glutathione ; Phloem Transport ; Poplar ; Redox State ; Root Growth
    ISSN: 0022-0957
    E-ISSN: 1460-2431
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: PLoS ONE, 2011, Vol.6(4), p.e19045
    Description: Modern agriculture is based on the notion that nitrate is the main source of nitrogen (N) for crops, but nitrate is also the most mobile form of N and easily lost from soil. Efficient acquisition of nitrate by crops is therefore a prerequisite for avoiding off-site N pollution. Sugarcane is considered the most suitable tropical crop for biofuel production, but surprisingly high N fertilizer applications in main producer countries raise doubt about the sustainability of production and are at odds with a carbon-based crop. Examining reasons for the inefficient use of N fertilizer, we hypothesized that sugarcane resembles other giant tropical grasses which inhibit the production of nitrate in soil and differ from related grain crops with a confirmed ability to use nitrate. The results of our study support the hypothesis that N-replete sugarcane and ancestral species in the Andropogoneae supertribe strongly prefer ammonium over nitrate. Sugarcane differs from grain crops, sorghum and maize, which acquired both N sources equally well, while giant grass, Erianthus, displayed an intermediate ability to use nitrate. We conclude that discrimination against nitrate and a low capacity to store nitrate in shoots prevents commercial sugarcane varieties from taking advantage of the high nitrate concentrations in fertilized soils in the first three months of the growing season, leaving nitrate vulnerable to loss. Our study addresses a major caveat of sugarcane production and affords a strong basis for improvement through breeding cultivars with enhanced capacity to use nitrate as well as through agronomic measures that reduce nitrification in soil.
    Keywords: Research Article ; Agriculture ; Biology ; Chemistry ; Chemistry ; Plant Biology ; Biotechnology ; Ecology ; Developmental Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Experimental Botany, 2012, Vol. 63(5), pp.1873-1893
    Description: The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar ( Populus tremula×Populus alba ) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as ‘S limitation’ and ‘early S deficiency’. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter Pta SULTR1;2 expression) and reduction capacities (enhanced adenosine 5′-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter Pta SULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter Pta SULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at ‘early S deficiency’, expression of microRNA395 (miR395), which targets transcripts of Pta ATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at ‘early S deficiency’ only. Thus, S depletion affects S and plant hormone metabolism of poplar during ‘S limitation’ and ‘early S deficiency’ in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp.
    Keywords: Aps Reductase ; Atp Sulphurylase ; Mir395 ; Plant Hormones ; Poplar ; Sulphate Transporter (Sultr) ; Sulphur Deficiency
    ISSN: 0022-0957
    E-ISSN: 1460-2431
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Journal of experimental botany, 2010, Vol.61(2), pp.609-22
    Description: Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor treatment, and in APR overexpressing poplar, is discussed.
    Keywords: Glutamate-Cysteine Ligase -- Metabolism ; Oxidoreductases Acting on Sulfur Group Donors -- Metabolism ; Plant Proteins -- Metabolism ; Plants, Genetically Modified -- Physiology ; Populus -- Physiology ; Sulfates -- Metabolism ; Sulfite Oxidase -- Metabolism ; Sulfur -- Metabolism
    ISSN: 00220957
    E-ISSN: 1460-2431
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: PLoS ONE, 01 January 2018, Vol.13(3), p.e0194684
    Description: The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: PLoS ONE, 01 January 2017, Vol.12(6), p.e0177883
    Description: Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera,...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages