Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    Description: Spatial variability of hydraulic aquifer parameters causes meandering, squeezing, stretching, and enhanced mixing of steady state plumes in concentrated hot-spots of mixing. Because the exact spatial distribution of hydraulic parameters is uncertain, the spatial distribution of enhanced mixing rates is also uncertain. We discuss how relevant the resulting uncertainty of mixing rates is for predicting concentrations. We develop analytical solutions for the full statistical distribution of steady state concentration in two-dimensional, statistically uniform domains with log-hydraulic conductivity following an isotropic exponential model. In particular, we analyze concentration statistics at the fringes of wide plumes, conceptually represented by a solute introduced over half the width of the domain. Our framework explicitly accounts for uncertainty of streamline meandering and uncertainty of effective transverse mixing (defined at the Darcy scale). We make use of existing low-order closed-form expressions that lead to analytical expressions for the statistical distribution of local concentration values. Along the expected position of the plume fringe, the concentration distribution strongly clusters at its extreme values. This behavior extends over travel distances of up to tens of integral scales for the parameters tested in our study. In this regime, the uncertainty of effective transverse mixing is substantial enough to have noticeable effects on the concentration probability density function. At significantly larger travel distances, intermediate concentration values become most likely, and uncertainty of effective transverse mixing becomes negligible. A comparison to numerical Monte Carlo simulations of flow and solute transport show excellent agreement with the theoretically derived expressions.
    Description: Peer Reviewed
    Keywords: Àrees Temàtiques De La Upc::Enginyeria Civil::Geologia::Hidrologia Subterrània ; Groundwater ; Hydrology - - Numerical Metods ; Hidrologia - - Aigües Subterrànies ; Hidrologia - - Mètodes Numèrics
    Source: RECERCAT (Dipòsit de la Recerca de Catalunya)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    Description: We study plumes originating from continuous sources that require a dissolved reaction partner for their degradation. The length of such plumes is typically controlled by transverse mixing. While analytical expressions have been derived for homogeneous flow fields, incomplete characterization of the hydraulic conductivity field causes uncertainty in predicting plume lengths in heterogeneous domains. In this context, we analyze the effects of three sources of uncertainty: (i) The uncertainty of the effective mixing rate along the plume fringes due to spatially varying flow focusing, (ii) the uncertainty of the volumetric discharge through (and thus total mass flux leaving) the source area, and (iii) different parameterizations of the Darcy-scale transverse dispersion coefficient. The first two are directly related to heterogeneity of hydraulic conductivity. In this paper, we derive semi-analytical expressions for the probability distribution of plume lengths at different levels of complexity. The results are compared to numerical Monte Carlo simulations. Uncertainties in mixing and in the source strength result in a statistical distribution of possible plume lengths. For unconditional random hydraulic conductivity fields, plume lengths may vary by more than one order of magnitude even for moderate degrees of heterogeneity. Our results show that the uncertainty of volumetric flux through the source is the most relevant contribution to the variance of the plume length. The choice of different parameterizations for the local dispersion coefficient leads to differences in the mean estimated plume length.
    Description: Peer Reviewed
    Keywords: Àrees Temàtiques De La Upc::Enginyeria Civil::Geologia::Hidrologia Subterrània ; Groundwater Transport ; Aigües Subterrànies - - Contaminació - - Models Matemàtics
    Source: RECERCAT (Dipòsit de la Recerca de Catalunya)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages