Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Proceedings of SPIE, 19 June 2002, Vol.4626(1), pp.308-315
    Description: We have developed a SNP scoring platform, yielding high throughput, inexpensive assays. The basic platform uses fluorescently labeled DNA fragments bound to microspheres, which are analyzed using flow cytometry. SNP scoring is performed using minisequencing primers and fluorescently labeled dideoxynucleotides. Furthermore, multiplexed microspheres make it possible to score hundreds of SNPs simultaneously. Multiplexing, coupled with high throughput rates allow inexpensive scoring of several million SNPs/day. GAMMArrays use universal tags that consist of computer designed, unique DNA tails. These are incorporated into each primer, and the reverse-component is attached to a discrete population of microspheres in a multiplexed set. This enables simultaneous minisequencing of many SNPs in solution, followed by capture onto the appropriate microsphere for multiplexed analysis by flow cytometry. We present results from multiplexed SNP analyses of bacterial pathogens, and human mtDNA variation. Analytes are performed on PCR amplicons, each containing numerous SNPs scored simultaneously. In addition, these assays easily integrate into conventional liquid handling automation, and require no unique instrumentation for setup and analysis. Very high signal-to-noise ratios, ease of setup, flexibility in format and scale, and low cost make these assays extremely versatile and valuable tools for a wide variety of SNP scoring applications.
    Keywords: Engineering
    ISBN: 9780819443656
    ISSN: 0277-786X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages