Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Neural Computing and Applications, 2018, Vol.29(4), pp.943-957
    Description: Most existing content-based image retrieval and classification systems rely on low-level features which are automatically extracted from images. However, often these features lack the discrimination power needed for accurate description of the image content, and hence, they may lead to a poor retrieval or classification performance. We propose a novel technique to improve low-level features which uses parallel one-against-all perceptrons to synthesize new features with a higher discrimination power which in turn leads to improved classification and retrieval results. The proposed method can be applied on any database and low-level features as long as some ground-truth information is available. The main merits of the proposed technique are its simplicity and faster computation compared to existing feature synthesis methods. Extensive simulation results show a significant improvement in the features’ discrimination power.
    Keywords: Content-based image retrieval and classification ; Feature synthesis ; Multi-dimensional particle swarm optimization ; Multi-layer perceptrons
    ISSN: 0941-0643
    E-ISSN: 1433-3058
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Signal Processing Systems, 2019, Vol.91(2), pp.179-189
    Description: Timely and accurate bearing fault detection and diagnosis is important for reliable and safe operation of industrial systems. In this study, performance of a generic real-time induction bearing fault diagnosis system employing compact adaptive 1D Convolutional Neural Network (CNN) classifier is extensively studied. In the literature, although many studies have developed highly accurate algorithms for detecting bearing faults, their results have generally been limited to relatively small train/test data sets. As opposed to conventional intelligent fault diagnosis systems that usually encapsulate feature extraction, feature selection and classification as distinct blocks, the proposed system takes directly raw time-series sensor data as input and it can efficiently learn optimal features with the proper training. The main advantages of the 1D CNN based approach are 1) its compact architecture configuration (rather than the complex deep architectures) which performs only 1D convolutions making it suitable for real-time fault detection and monitoring, 2) its cost effective and practical real-time hardware implementation, 3) its ability to work without any pre-determined transformation (such as FFT or DWT), hand-crafted feature extraction and feature selection, and 4) its capability to provide efficient training of the classifier with limited size of training data set and limited number of BP iterations. Effectiveness and feasibility of the 1D CNN based fault diagnosis method is validated by applying it to two commonly used benchmark real vibration data sets and comparing the results with the other competing intelligent fault diagnosis methods.
    Keywords: Bearing fault detection ; Intelligent systems ; Convolutional neural networks
    ISSN: 1939-8018
    E-ISSN: 1939-8115
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages