Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Tomography
  • Wiley (CrossRef)  (3)
Type of Medium
Language
Year
  • 1
    In: New Phytologist, November 2011, Vol.192(3), pp.653-663
    Description: • Despite the importance of rhizosphere properties for water flow from soil to roots, there is limited quantitative information on the distribution of water in the rhizosphere of plants. • Here, we used neutron tomography to quantify and visualize the water content in the rhizosphere of the plant species chickpea (Cicer arietinum), white lupin (Lupinus albus), and maize (Zea mays) 12 d after planting. • We clearly observed increasing soil water contents (θ) towards the root surface for all three plant species, as opposed to the usual assumption of decreasing water content. This was true for tap roots and lateral roots of both upper and lower parts of the root system. Furthermore, water gradients around the lower part of the roots were smaller and extended further into bulk soil compared with the upper part, where the gradients in water content were steeper. • Incorporating the hydraulic conductivity and water retention parameters of the rhizosphere into our model, we could simulate the gradual changes of θ towards the root surface, in agreement with the observations. The modelling result suggests that roots in their rhizosphere may modify the hydraulic properties of soil in a way that improves uptake under dry conditions.
    Keywords: Extent Of Rhizosphere ; Modelling ; Neutron Tomography ; Rhizosphere Hydraulic Properties ; Root Water Uptake ; Soil Moisture Profile ; Water Distribution
    ISSN: 0028-646X
    E-ISSN: 1469-8137
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Water Resources Research, June 2017, Vol.53(6), pp.4709-4724
    Description: The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron‐based X‐ray tomography (X‐ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X‐ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two‐phase experiments in which a flux boundary condition is changed from flow to no‐flow. Implications for experiments with pressure boundary conditions are discussed. What happens to fluids in a porous medium after pumping is stopped? Fast X‐ray tomography shows that even in a sample smaller than a sugar cube fluid interfaces continue to move for hours until an optimal fluid configuration is reached. The pace is limited by slow relaxation of dynamic contact angles. Therefore hydrostatic equilibrium, which is the state at which all fluid interfaces come to rest, is hardly ever attained in practice when conducting two‐phase flow experiments where the flow is stopped in much larger soil or rock samples. Relaxation dynamics through internal redistribution of fluids after fast drainage occurs in two stages A quick dissipation within seconds is followed by slow relaxation within several hours due to relaxation of dynamic contact angles Fluid configurations during relaxation are very different from those during quasi‐static drainage and imbibition
    Keywords: Two‐Phase Flow ; Dynamic Effects ; Hydraulic Nonequilibrium ; Dynamic Contact Angle ; Fluid Configuration ; Fluid Topology
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Plant Nutrition and Soil Science, February 2010, Vol.173(1), pp.88-99
    Description: Soil, the “Earth's thin skin” serves as the delicate interface between the biosphere, hydrosphere, atmosphere, and lithosphere. It is a dynamic and hierarchically organized system of various organic and inorganic constituents and organisms, the spatial structure of which defines a large, complex, and heterogeneous interface. Biogeochemical processes at soil interfaces are fundamental for the overall soil development, and they are the primary driving force for key ecosystem functions such as plant productivity and water quality. Ultimately, these processes control the fate and transport of contaminants and nutrients into the vadose zone and as such their biogeochemical cycling. The definite objective in biogeochemical‐interface research is to gain a mechanistic understanding of the architecture of these biogeochemical interfaces in soils and of the complex interplay and interdependencies of the physical, chemical, and biological processes acting at and within these dynamic interfaces in soil. The major challenges are (1) to identify the factors controlling the architecture of biogeochemical interfaces, (2) to link the processes operative at the individual molecular and/or organism scale to the phenomena active at the aggregate scale in a mechanistic way, and (3) to explain the behavior of organic chemicals in soil within a general mechanistic framework. To put this in action, integration of soil physical, chemical, and biological disciplines is mandatory. Indispensably, it requires the adaption and development of characterization and probing techniques adapted from the neighboring fields of molecular biology, analytical and computational chemistry as well as materials and nano‐sciences. To shape this field of fundamental soil research, the German Research Foundation (DFG) has granted the Priority Program “Biogeochemical Interfaces in Soil”, in which 22 individual research projects are involved.
    Keywords: Soil Function ; Soil Architecture ; Spectro‐Microscopy ; Tomography ; Som ; Soil Microbial Ecology ; Organic Chemicals
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages