Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoarchaeology, July 2015, Vol.30(4), pp.369-378
    Description: Roman cisterns served as rainwater storage devices for centuries and are densely distributed in parts of northern Jordan. A major earthquake hit the region . A.D. 750 and in a short time many settlements were abandoned. As a consequence, most cisterns were not maintained, and they filled with sediments that today provide a postabandonment depositional record. In two field surveys, we mapped the locations of more than 100 cisterns in the Wadi Al‐Arab basin and selected two for detailed stratigraphic analysis that included C and optically stimulated luminescence dating. Catchment basin area for each cistern was determined by differential GPS. Both cisterns filled with sediments after the great earthquake and consequent abandonment of the region. Calculated sediment volumes are translated to long‐term average sediment export rates of 2.6–6.6 t haa, which are comparable to erosion and sediment yield rates from other studies within the Mediterranean region. Our pilot study suggests that this approach can be applied elsewhere to calculate long‐term sediment export rates on hill slopes containing relict cisterns.
    Keywords: Quaternary Geology ; Sedimentary Petrology ; Arid Environment ; Asia ; Cenozoic ; Chronostratigraphy ; Clay Minerals ; Climate Change ; Climatic Controls ; Dates ; Depositional Environment ; Desertification ; Drainage Basins ; Erodibility ; Erosion ; Erosion Rates ; Holocene ; Human Activity ; Human Ecology ; Hydrology ; Jordan ; Jordan River ; Land Use ; Mediterranean Region ; Middle Ages ; Middle East ; Optically Stimulated Luminescence ; Paleogeography ; Permeability ; Quaternary ; Rainfall ; Reconstruction ; Roman Period ; Sediment Yield ; Sedimentation ; Sheet Silicates ; Silicates ; Soil Erosion ; Stratigraphy ; Terrestrial Environment ; Upper Holocene ; Urban Environment ; Wadi Al-Arab ; Water Resources;
    ISSN: 0883-6353
    E-ISSN: 1520-6548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Water Resources Research, November 2015, Vol.51(11), pp.9094-9111
    Description: We study the impact of pore structure and surface roughness on capillary trapping of nonwetting gas phase during imbibition with water for capillary numbers between 10 and 5 × 10, within glass beads, natural sands, glass beads monolayers, and 2‐D micromodels. The materials exhibit different roughness of the pore‐solid interface. We found that glass beads and natural sands, which exhibit nearly the same grain size distribution, pore size distribution, and connectivity, showed a significant difference of the trapped gas phase of about 15%. This difference can be explained by the microstructure of the pore‐solid interface. Based on the visualization of the trapping dynamics within glass beads monolayers and 2‐D micromodels, we could show that bypass trapping controls the trapping process in glass beads monolayers, while snap‐off trapping controls the trapping process in 2‐D micromodels. We conclude that these different trapping processes are the reason for the different trapping efficiency, when comparing glass beads packs with natural sand packs. Moreover, for small capillary numbers of 10, we found that the cluster size distribution of trapped gas clusters of all 2‐D and 3‐D porous media can be described by a universal power law behavior predicted from percolation theory. This cannot be expected a priori for 2‐D porous media, because bicontinuity of the two bulk phases is violated. Obviously, bicontinuity holds for the thin‐film water phase and the bulk gas phase. The snap‐off trapping process leads to ordinary bond percolation in front of the advancing bulk water phase and is the reason for the observed universal power law behavior in 2‐D micromodels with rough surfaces. Surface roughness controls capillary trapping efficiency The transition‐zone model can be applied to 2‐D micromodels with rough surfaces The 2‐D and 3‐D porous media belong all to the same universality class
    Keywords: Surface Roughness ; Precursor Thin‐Film Flow ; Snap‐Off Trapping ; Universal Power Law ; Ordinary Bond Percolation
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages