Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Brain, Oxford University Press (OUP), Vol. 146, No. 3 ( 2023-03-01), p. 977-990
    Abstract: Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P & lt; 5 × 10−8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10−16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187–0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci ( & gt;90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10−4, OR = 2.5, 95%CI = 1.499–4.157) and DRB1*04:01 allele (P = 8.3 × 10−5, OR = 2.4, 95%CI = 1.548–3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2002
    In:  Information and Computation Vol. 173, No. 2 ( 2002-03), p. 123-131
    In: Information and Computation, Elsevier BV, Vol. 173, No. 2 ( 2002-03), p. 123-131
    Type of Medium: Online Resource
    ISSN: 0890-5401
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 283864-3
    detail.hit.zdb_id: 1468010-5
    SSG: 24,1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 40 ( 2022-10-04)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 40 ( 2022-10-04)
    Abstract: Fusobacterium nucleatum , long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σ E . To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σ E response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σ E response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σ E . In addition to the characterization of a global stress response in F. nucleatum , the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 13 ( 2012-03-27)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 13 ( 2012-03-27)
    Abstract: Our current search for Hfq-dependent sRNAs in Salmonella has identified ∼130 validated candidates, most of which are likely to perform regulatory functions. Because we are just beginning to understand the complex interplay between core genomic elements and HGT-acquired genes ( 5 ), we believe that additional studies will reveal a greater role than previously expected for sRNA-mediated regulation in the acquisition and control of virulence determinants. This role should be the case in both Salmonella and other bacterial pathogens. The binding energies (i.e., the strength of molecular interactions) of the SgrS– sopD and SgrS– sopD2 duplexes were calculated; these energies indicated that G-U conferred a lower stability interaction compared with G-C that was decreased by ∼1.2 kcal/mol. How can such a marginal difference in RNA duplex strength confer selective target discrimination? By generating a number of SgrS mutant alleles, we found that the positioning of G-C vs. G-U base pairing is critical for successful target discrimination. The proximal end of the sRNA that is responsible for RNA duplex formation, the so-called seed-sequence, identifies genuine target mRNAs by the strength and accuracy of base pairing. A characteristic of HGT genes is that they are more likely to undergo duplication than so-called core genes. Gene duplication is a well-studied phenomenon accelerating evolutionary change in bacterial pathogens ( 4 ). For example, the sopD gene has been duplicated to generate sopD2 throughout the S. enterica species, except in the ancestral S. bongori ( 1 ). A bioinformatic comparison of the sopD and sopD2 sequences showed that the SgrS targeting region is well-conserved between both genes; in other words, the component sequences do not change greatly. However, our experiments showed that SgrS negatively regulated the expression of sopD but not sopD2 . That is, SgrS discriminates between these two potential target mRNAs. This finding led us to discover that the SgrS– sopD2 interaction differed slightly from the original SgrS– sopD RNA duplex because of the exchange of just one of the component base pairs: a G-U for G-C exchange is responsible for this short interaction ( Fig. P1 ). G-C base pairs engage three hydrogen bonds instead of the two formed by G-U base pairs, and therefore, they confer a higher degree of stability on the RNA duplex. Indeed, the replacement of the G-U base pair with G-C in the SgrS– sopD2 interaction produced a fully functional SgrS target gene that displayed a regulatory pattern similar to sopD . Such differential stability allows the sRNA to discriminate between its targets. We reproduced target discrimination between sopD vs. sopD2 in vitro using both the full-length SgrS molecule and a 14-nt RNA corresponding to the targeting region of SgrS. Importantly, we discovered that, in addition to preventing the accumulation of phosphorylated sugars by blocking sugar import, SgrS reduces the expression of the horizontally acquired gene that encodes the virulence factor SopD ( Fig. P1 ). SgrS does this reduction by binding to the mRNA molecule associated with the sopD gene. The suppressive activity of SgrS requires the Hfq protein, which acts as an RNA chaperone, maintains sRNA stability, and facilitates the joining or annealing of the sRNA to its target mRNA ( 3 ). SgrS reduces SopD expression under both infection-relevant and standard laboratory conditions. Furthermore, our genetic and biochemical analyses of the resultant RNA duplex formation revealed that SgrS binding sequesters the sopD start codon to block the initiation of the translation process. To our knowledge, it has not previously been shown that Hfq-binding sRNAs can control the expression of horizontally acquired virulence factors. Salmonella and E. coli not only share many regulatory proteins but also share several highly conserved sRNAs. These so-called core sRNAs often serve a central function in bacterial metabolism or the response to environmental stress, and they control target genes that cluster into distinct functional groups. A good example is the SgrS sRNA that prevents the accumulation of phosphorylated sugars in E. coli ( 2 ). In this study, we showed that SgrS performs a similar function in Salmonella . Small noncoding RNAs (sRNAs) constitute a vital group of so-called posttranscriptional regulators that shape the gene expression of eukaryotic and prokaryotic organisms. In bacteria, sRNAs generally act through base pairing to reduce or increase the translation of target mRNAs into protein. Most of our current knowledge of sRNA numbers and functions stems from two species, Escherichia coli and Salmonella enterica serovar Typhimurium. Both organisms display a high degree of sequence conservation across about three-quarters of the chromosome that constitutes their core genome. An additional ∼25% of Salmonella genes were acquired by horizontal gene transfer (HGT)—a mechanism by which genes move between organisms—and are required for the virulent lifestyle of this pathogen ( 1 ). Little is known about interactions between the core genome and these horizontally acquired genomic islands at the regulatory level. We have found that posttranscriptional control by sRNA regulators plays an important role.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 51 ( 2009-12-22), p. 21878-21882
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 51 ( 2009-12-22), p. 21878-21882
    Abstract: Methanosarcina mazei and related mesophilic archaea are the only organisms fermenting acetate, methylamines, and methanol to methane and carbon dioxide, contributing significantly to greenhouse gas production. The biochemistry of these metabolic processes is well studied, and genome sequences are available, yet little is known about the overall transcriptional organization and the noncoding regions representing 25% of the 4.01-Mb genome of M. mazei . We present a genome-wide analysis of transcription start sites (TSS) in M. mazei grown under different nitrogen availabilities. Pyrosequencing-based differential analysis of primary vs. processed 5′ ends of transcripts discovered 876 TSS across the M. mazei genome. Unlike in other archaea, in which leaderless mRNAs are prevalent, the majority of the detected mRNAs in M. mazei carry long untranslated 5′ regions. Our experimental data predict a total of 208 small RNA (sRNA) candidates, mostly from intergenic regions but also antisense to 5′ and 3′ regions of mRNAs. In addition, 40 new small mRNAs with ORFs of ≤30 aa were identified, some of which might have dual functions as mRNA and regulatory sRNA. We confirmed differential expression of several sRNA genes in response to nitrogen availability. Inspection of their promoter regions revealed a unique conserved sequence motif associated with nitrogen-responsive regulation, which might serve as a regulator binding site upstream of the common IIB recognition element. Strikingly, several sRNAs antisense to mRNAs encoding transposases indicate nitrogen-dependent transposition events. This global TSS map in archaea will facilitate a better understanding of transcriptional and posttranscriptional control in the third domain of life.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 47 ( 2010-11-23), p. 20435-20440
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 47 ( 2010-11-23), p. 20435-20440
    Abstract: The abundant class of bacterial Hfq-associated small regulatory RNAs (sRNAs) parallels animal microRNAs in their ability to control multiple genes at the posttranscriptional level by short and imperfect base pairing. In contrast to the universal length and seed pairing mechanism of microRNAs, the sRNAs are heterogeneous in size and structure, and how they regulate multiple targets is not well understood. This paper provides evidence that a 5′ located sRNA domain is a critical element for the control of a large posttranscriptional regulon. We show that the conserved 5′ end of RybB sRNA recognizes multiple mRNAs of Salmonella outer membrane proteins by ≥7-bp Watson–Crick pairing. When fused to an unrelated sRNA, the 5′ domain is sufficient to guide target mRNA degradation and maintain σ E -dependent envelope homeostasis. RybB sites in mRNAs are often conserved and flanked by 3′ adenosine. They are found in a wide sequence window ranging from the upstream untranslated region to the deep coding sequence, indicating that some targets might be repressed at the level of translation, whereas others are repressed primarily by mRNA destabilization. Autonomous 5′ domains seem more common in sRNAs than appreciated and might improve the design of synthetic RNA regulators.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 41 ( 2016-10-11), p. 11591-11596
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 41 ( 2016-10-11), p. 11591-11596
    Abstract: The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica , partitioning its coding and noncoding transcripts based on their network of RNA–protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 39 ( 2007-09-25), p. 15376-15381
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 39 ( 2007-09-25), p. 15376-15381
    Abstract: Gab1 is a multiadaptor protein that has been shown to be required for multiple processes in embryonic development and oncogenic transformation. Gab1 functions by amplifying signal transduction downstream of various receptor tyrosine kinases through recruitment of multiple signaling effectors, including phosphatidylinositol 3-kinase and Shp2. Until now, the functional significance of individual interactions in vivo was not known. Here we have generated knockin mice that carry point mutations in either the P13K or Shp2 binding sites of Gab1. We show that different effector interactions with Gab1 play distinct biological roles downstream of Gab1 during the development of different organs. Recruitment of phosphatidylinositol 3-kinase by Gab1 is essential for EGF receptor-mediated embryonic eyelid closure and keratinocyte migration, and the Gab1–Shp2 interaction is crucial for Met receptor-directed placental development and muscle progenitor cell migration to the limbs. Furthermore, we investigate the dual association of Gab1 with the Met receptor. By analyzing knockin mice with mutations in the Grb2 or Met binding site of Gab1, we show that the requirements for Gab1 recruitment to Met varies in different biological contexts. Either the direct or the indirect interaction of Gab1 with Met is sufficient for Met-dependent muscle precursor cell migration, whereas both modes of interaction are required and neither is sufficient for placenta development, liver growth, and palatal shelf closure. These data demonstrate that Gab1 induces different biological responses through the recruitment of distinct effectors and that different modes of recruitment for Gab1 are required in different organs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 362, No. 6419 ( 2018-12-07), p. 1156-1160
    Abstract: Many bacterial infections are hard to treat and tend to relapse, possibly due to the presence of antibiotic-tolerant persisters. In vitro, persister cells appear to be dormant. After uptake of Salmonella species by macrophages, nongrowing persisters also occur, but their physiological state is poorly understood. In this work, we show that Salmonella persisters arising during macrophage infection maintain a metabolically active state. Persisters reprogram macrophages by means of effectors secreted by the Salmonella pathogenicity island 2 type 3 secretion system. These effectors dampened proinflammatory innate immune responses and induced anti-inflammatory macrophage polarization. Such reprogramming allowed nongrowing Salmonella cells to survive for extended periods in their host. Persisters undermining host immune defenses might confer an advantage to the pathogen during relapse once antibiotic pressure is relieved.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 12 ( 2012-03-20), p. 4621-4626
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 12 ( 2012-03-20), p. 4621-4626
    Abstract: The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans -encoded target mRNAs. Although the number of known sRNA–mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remained unknown. We report that RelA, a protein long known as the central regulator of the bacterial-stringent response, acts on Hfq and thereby affects the physiological activity of RyhB sRNA as a regulator of iron homeostasis. RyhB requires RelA in vivo to arrest growth during iron depletion and to down-regulate a subset of its target mRNAs ( fdoG , nuoA , and sodA ), whereas the sodB and sdhC targets are barely affected by RelA. In vitro studies with recombinant proteins show that RelA enhances multimerization of Hfq monomers and stimulates Hfq binding of RyhB and other sRNAs. Hfq from polysomes extracted from wild-type cells binds RyhB in vitro, whereas Hfq from polysomes of a relA mutant strain shows no binding. We propose that, by increasing the level of the hexameric form of Hfq, RelA enables binding of RNAs whose affinity for Hfq is low. Our results suggest that, under specific conditions and/or environments, Hfq concentrations are limiting for RNA binding, which thereby provides an opportunity for cellular proteins such as RelA to impact sRNA-mediated responses by modulating the activity of Hfq.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages