feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edochu_18452_20406
    Format: 1 Online-Ressource (17 Seiten)
    ISSN: 1027-5606 , 1027-5606
    Content: As northern environments undergo intense changes due to a warming climate and altered land use practices, there is an urgent need for improved understanding of the impact of atmospheric forcing and vegetation on water storage and flux dynamics in the critical zone. We therefore assess the age dynamics of water stored in the upper 50 cm of soil, and in evaporation, transpiration, or recharge fluxes at four soil–vegetation units of podzolic soils in the northern latitudes with either heather or tree vegetation (Bruntland Burn in Scotland, Dorset in Canada, and Krycklan in Sweden). We derived the age dynamics with the physically based SWIS (SoilWater Isotope Simulator) model, which has been successfully used to simulate the hydrometric and isotopic dynamics in the upper 50 cm of soils at the study sites. The modelled subsurface was divided into interacting fast and slow flow domains. We tracked each day’s infiltrated water through the critical zone and derived forward median travel times (which show how long the water takes to leave the soil via evaporation, transpiration, or recharge), and median water ages (to estimate the median age of water in soil storage or the evaporation, transpiration, and recharge fluxes). Resulting median travel times were time-variant, mainly governed by major recharge events during snowmelt in Dorset and Krycklan or during the wetter winter conditions in Bruntland Burn. Transpiration travel times were driven by the vegetation growth period with the longest travel times (200 days) for waters infiltrated in early dormancy and the shortest travel times during the vegetation period. However, long tails of the travel time distributions in evaporation and transpiration revealed that these fluxes comprised waters older than 100 days. At each study site, water ages of soil storage, evaporation, transpiration, and recharge were all inversely related to the storage volume of the critical zone: water ages generally decreased exponentially with increasing soil water storage. During wet periods, young soil waters were more likely to be evapotranspired and recharged than during drier periods. While the water in the slow flow domain showed longterm seasonal dynamics and generally old water ages, the water ages of the fast flow domain were generally younger and much flashier. Our results provide new insights into the mixing and transport processes of soil water in the upper layer of the critical zone, which is relevant for hydrological modelling at the plot to catchment scales as the common assumption of a well-mixed system in the subsurface holds for neither the evaporation, transpiration, or recharge.
    Content: Peer Reviewed
    Note: This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Göttingen : Copernicus Publ., 22, Seiten 3965-3981, 1027-5606
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_21386
    Format: 1 Online-Ressource (17 Seiten)
    ISSN: 1027-5606 , 1027-5606
    Content: Permafrost strongly controls hydrological processes in cold regions. Our understanding of how changes in seasonal and perennial frozen ground disposition and linked storage dynamics affect runoff generation processes remains limited. Storage dynamics and water redistribution are influenced by the seasonal variability and spatial heterogeneity of frozen ground, snow accumulation and melt. Stable isotopes are potentially useful for quantifying the dynamics of water sources, flow paths and ages, yet few studies have employed isotope data in permafrost-influenced catchments. Here, we applied the conceptual model STARR (the Spatially distributed Tracer-Aided Rainfall–Runoff model), which facilitates fully distributed simulations of hydrological storage dynamics and runoff processes, isotopic composition and water ages. We adapted this model for a subarctic catchment in Yukon Territory, Canada, with a timevariable implementation of field capacity to include the influence of thaw dynamics. A multi-criteria calibration based on stream flow, snow water equivalent and isotopes was applied to 3 years of data. The integration of isotope data in the spatially distributed model provided the basis for quantifying spatio-temporal dynamics of water storage and ages, emphasizing the importance of thaw layer dynamics in mixing and damping the melt signal. By using the model conceptualization of spatially and temporally variable storage, this study demonstrates the ability of tracer-aided modelling to capture thaw layer dynamics that cause mixing and damping of the isotopic melt signal.
    Content: Peer Reviewed
    Note: This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Katlenburg-Lindau : EGU, 23,6, Seiten 2507-2523, 1027-5606
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edochu_18452_22559
    Format: 1 Online-Ressource (16 Seiten)
    Content: In drought-sensitive lowland catchments, ecohydrological feedbacks to climatic anomalies can give valuable insights into ecosystem functioning in the context of alarming climate change projections. However, the dynamic influences of vegetation on spatio-temporal processes in water cycling in the critical zone of catchments are not yet fully understood. We used water stable isotopes to investigate the impacts of the 2018 drought on dominant soil–vegetation units of the mixed land use Demnitz Millcreek (DMC, north-eastern Germany) catchment (66 km2). The isotope sampling was carried out in conjunction with hydroclimatic, soil, groundwater, and vegetation monitoring. Drying soils, falling groundwater levels, cessation of streamflow, and reduced crop yields demonstrated the failure of catchment water storage to support “blue” (groundwater recharge and stream discharge) and “green” (evapotranspiration) water fluxes. We further conducted monthly bulk soil water isotope sampling to assess the spatio-temporal dynamics of water soil storage under forest and grassland vegetation. Forest soils were drier than the grassland, mainly due to higher interception and transpiration losses. However, the forest soils also had more freely draining shallow layers and were dominated by rapid young (age 〈2 months) water fluxes after rainfall events. The grassland soils were more retentive and dominated by older water (age 〉2 months), though the lack of deep percolation produced water ages 〉1 year under forest. We found the displacement of any “drought signal” within the soil profile limited to the isotopic signatures and no displacement or “memory effect” in d-excess over the monthly time step, indicating rapid mixing of new rainfall. Our findings suggest that contrasting soil–vegetation communities have distinct impacts on ecohydrological partitioning and water ages in the sub-surface. Such insights will be invaluable for developing sustainable land management strategies appropriate to water availability and building resilience to climate change.
    Content: Peer Reviewed
    Note: This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Göttingen : Copernicus Publ., 24, Seiten 3737-3752
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    edochu_18452_24231
    Format: 1 Online-Ressource (5 Seiten)
    Content: Peer Reviewed
    In: New York : Wiley, 35,7
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edochu_18452_23529
    Format: 1 Online-Ressource (11 Seiten)
    Content: Spatially explicit knowledge of the origins of water resources for ecosystems and rivers is challenging when using tracer data alone. We use simulations from a spatially distributed model calibrated by extensive ecohydrological data sets in a small, energy‐limited catchment, where hillslope‐riparian dynamics are broadly representative of humid boreal headwater catchments that are experiencing rapid environmental transition. We hypothesize that in addition to wetness status, landscape heterogeneity modulates the water pathways that sustain ecosystem function and streamflows. Simulations show that catchment storage inversely controls stream water ages year‐round, but only during the drier seasons for transpiration and soil evaporation. The ages of these evaporative outputs depend much less on wetness status in the oft‐saturated riparian soils than on the freely draining hillslopes that subsidize them. This work highlights the need to consider local dynamics and time‐changing lateral heterogeneities when interpreting the ages, and thus the vulnerability, of water resources feeding streams and ecosystems in landscapes.
    Content: Knowing how much time water spends in a landscape (its “age”) helps understanding how water travels through it. These dynamics inform of the stability of water resources for ecosystems and societies, and of their vulnerabilities under climate and land use changes. Water ages may vary depending on how wet or dry a location gets between seasons and years. We thus need to learn more about the demographics (“how much and how old?”) of the water used by plants, evaporated from soils, and flowing in streams, but it is often impossible to monitor the heterogeneity of water pathways within landscapes. Addressing this challenge, we used a numerical model built upon coupling ecohydrological processes and that maps landscape locations. We adjusted this model using multiple data sets in a catchment representative of humid boreal environments where climate and vegetation are rapidly changing. We found markedly different aging patterns between water escaping the system through the plants, soils, and stream, depending on water storage status. This changing duration of water movement also differs between the catchment as a whole and its parts. This method can be used to better understand the multiple ways in which water moves through landscapes, in current and future conditions.
    Content: Peer Reviewed
    In: Hoboken, NJ : Wiley, 47,16
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edochu_18452_23614
    Format: 1 Online-Ressource (19 Seiten)
    ISSN: 0885-6087 , 0885-6087
    Content: We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well-known long-term study sites in northern/cold regions. These spanned a decreasing temperature gradient from Bruntland Burn (Scotland), Dorset (Canadian Shield), Dry Creek (USA), Krycklan (Sweden), to Wolf Creek (northern Canada). Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. The degree to which potential soil water sources could explain the isotopic composition of xylem water was assessed quantitatively using overlapping polygons to enclose respective data sets when plotted in dual isotope space. At most sites isotopes in xylem water from angiosperms showed a strong overlap with soil water; this was not the case for gymnosperms. In most cases, xylem water composition on a given sampling day could be better explained if soil water composition was considered over longer antecedent periods spanning many months. Xylem water at most sites was usually most dissimilar to soil water in drier summer months, although sites differed in the sequence of change. Open questions remain on why a significant proportion of isotopically depleted water in plant xylem cannot be explained by soil water sources, particularly for gymnosperms. It is recommended that future research focuses on the potential for fractionation to affect water uptake at the soil-root interface, both through effects of exchange between the vapour and liquid phases of soil water and the effects of mycorrhizal interactions. Additionally, in cold regions, evaporation and diffusion of xylem water in winter may be an important process.
    Content: Peer Reviewed
    In: New York, NY : Wiley, 35,1, 0885-6087
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edochu_18452_25312
    Format: 1 Online-Ressource (20 Seiten)
    ISSN: 0885-6087 , 0885-6087
    Content: Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio‐temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re‐develop urban catchments to protect, restore, and enhance their ecological and amenity value.
    Content: Peer Reviewed
    In: New York, NY : Wiley, 35,10, 0885-6087
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edochu_18452_25263
    Format: 1 Online-Ressource (3 Seiten)
    ISSN: 0885-6087 , 0885-6087
    Content: Peer Reviewed
    In: New York, NY : Wiley, 36,2, 0885-6087
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    edochu_18452_25535
    Format: 1 Online-Ressource (21 Seiten)
    Content: The dynamic relationships between water flux and storage, together with the associated water ages and speed of hydrological responses (as proxies for velocity and celerity respectively) are fundamental to understanding how catchments react to hydroclimate perturbations, such as floods and droughts. Using results from a calibrated, tracer-aided ecohydrological model (EcH2O-iso) we analyzed the dynamics of storage-flux-age-response time (RT) interactions at scales that resolve the internal heterogeneity of these non-stationary relationships. EcH2O-iso has previously shown an adequate representation of ecohydrological flux partitioning and storage dynamics (celerity), and water ages (velocity) over 11-year at Demnitzer Millcreek catchment (DMC, 66 km2), a drought-sensitive, lowland catchment in Germany. The 11-year period had marked hydroclimatic contrasts facilitating the evaluation of flux-storage-age-RT dynamics under different wetness anomalies. Our results show that the spatio–temporal variability of soil moisture and ecohydrological partitioning dynamics reflect both land use (especially forest cover) and distinct soil units (i.e., brown earth vs. podzolic soils). Spatial differences in RTs of storage were driven by rapid soil evaporation and transpiration responses to rainfall, which revealed a divergence of transpiration ages from RTs. RTs of groundwater and streamflow were fast (days), but mediation by soil water storage dynamics caused marked separation from water ages (years-decades) of deeper flow paths. Analysis of RTs and ages revealed a degradation of process representation with coarsening model spatial resolution. This study uses novel analysis of the spatio-temporal interactions of flux-storage-age-RT from a model to understand the sensitivity and resilience of catchment functionality to hydroclimatic perturbations.
    Content: Peer Reviewed
    In: New York : Wiley, 58,4
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    edochu_18452_27733
    Format: 1 Online-Ressource (17 Seiten)
    Content: Increased urbanization, coupled with the projected impacts of climatic change, mandates further evaluation of the impact of urban development on water flow paths to guide sustainable land-use planning. Though the general urbanization impacts of increased storm runoff peaks and reduced baseflows are well known; how the complex, non-stationary interaction of the dominant water fluxes within dynamic urban water stores sustain streamflow regimes over longer periods of time is less well quantified. In particular, there is a challenge in how hydrological modelling should integrate the juxtaposition of rapid and slower flow pathways of the urban ‘karst’ landscape and different approaches need evaluation. In this context, we utilized hydrological and water stable isotope datasets within a modelling framework that combined the commonly used Hydrologic Engineering Center Hydrological Modelling System (HEC-HMS) urban runoff model along with a simple hydrological tracer module and transit time modelling to evaluate the spatial and temporal variation of water flow paths and ages within a heavily urbanized 217 km2 catchment in Berlin, Germany. Deeper groundwater was the primary flow component in the upper reaches of the catchment within fewer urbanized regions, while the addition of wastewater effluent in the mid-reaches of the catchment was the dominant water supply to sustain baseflow in the lower main stem stream, with additional direct storm runoff and shallow subsurface contributions in the more urbanized lower reaches. Water ages from each modelling approach mirrored flow contributions and water age mixing potential in subsurface storage; with older average water and lower young water contributions in less urbanized sub-catchments and younger average water and higher young water contributions in more urbanized regions. The results from the first step towards more integrated tracer-aided hydrologic modelling tools for similar peri-urban catchments, given the potential limitations of simpler model frameworks. The results have broader implications for assessing the uncertainty in evaluating urban impacts on hydrological function under environmental change.
    Content: Peer Reviewed
    In: New York, NY : Wiley, 37,2
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages