feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • HU Berlin  (3)
Type of Medium
Language
Region
Library
Years
Subjects(RVK)
Keywords
Access
  • 1
    UID:
    b3kat_BV024859551
    Format: 105 Bl. , graph. Darst.
    Note: Berlin, Humboldt-Univ., Diss., 1998
    Language: German
    Subjects: Medicine
    RVK:
    Keywords: Hochschulschrift
    Author information: Paul, Friedemann 1967-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_26741
    Format: 1 Online-Ressource (16 Seiten)
    Content: (1) Background: Radial RARE-EPI MRI facilitates simultaneous T2 and T2* mapping (2in1-RARE-EPI). With modest undersampling (R = 2), the speed gain of 2in1-RARE-EPI relative to Multi-Spin-Echo and Multi-Gradient-Recalled-Echo references is limited. Further reduction in scan time is crucial for clinical studies investigating T2 and T2* as imaging biomarkers. We demonstrate the feasibility of further acceleration, utilizing compressed sensing (CS) reconstruction of highly undersampled 2in1-RARE-EPI. (2) Methods: Two-fold radially-undersampled 2in1-RARE-EPI data from phantoms, healthy volunteers (n = 3), and multiple sclerosis patients (n = 4) were used as references, and undersampled (Rextra = 1–12, effective undersampling Reff = 2–24). For each echo time, images were reconstructed using CS-reconstruction. For T2 (RARE module) and T2* mapping (EPI module), a linear least-square fit was applied to the images. T2 and T2* from CS-reconstruction of undersampled data were benchmarked against values from CS-reconstruction of the reference data. (3) Results: We demonstrate accelerated simultaneous T2 and T2* mapping using undersampled 2in1-RARE-EPI with CS-reconstruction is feasible. For Rextra = 6 (TA = 01:39 min), the overall MAPE was ≤8% (T2*) and ≤4% (T2); for Rextra = 12 (TA = 01:06 min), the overall MAPE was 〈13% (T2*) and 〈5% (T2). (4) Conclusion: Substantial reductions in scan time are achievable for simultaneous T2 and T2* mapping of the brain using highly undersampled 2in1-RARE-EPI with CS-reconstruction.
    Content: Peer Reviewed
    In: Ann Arbor, Michigan : Grapho Publications, 9,1, Seiten 299-314
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edochu_18452_27083
    Format: 1 Online-Ressource (12 Seiten)
    Content: One major bottleneck in the ongoing COVID-19 pandemic is the limited number of critical care beds. Due to the dynamic development of infections and the time lag between when patients are infected and when a proportion of them enters an intensive care unit (ICU), the need for future intensive care can easily be underestimated. To infer future ICU load from reported infections, we suggest a simple statistical model that (1) accounts for time lags and (2) allows for making predictions depending on different future growth of infections. We have evaluated our model for three heavily affected regions in Europe, namely Berlin (Germany), Lombardy (Italy), and Madrid (Spain). Before extensive containment measures made an impact, we first estimate the region-specific model parameters, namely ICU rate, time lag between infection, and ICU admission as well as length of stay in ICU. Whereas for Berlin, an ICU rate of 6%, a time lag of 6 days, and a stay of 12 days in ICU provide the best fit of the data, for Lombardy and Madrid the ICU rate was higher (18% and 15%) and the time lag (0 and 3 days) and the stay in ICU (3 and 8 days) shorter. The region-specific models are then used to predict future ICU load assuming either a continued exponential phase with varying growth rates (0–15%) or linear growth. By keeping the growth rates flexible, this model allows for taking into account the potential effect of diverse containment measures. Thus, the model can help to predict a potential exceedance of ICU capacity depending on future growth. A sensitivity analysis for an extended time period shows that the proposed model is particularly useful for exponential phases of the disease.
    Content: Peer Reviewed
    In: London : Nature Publishing Group, 11,1
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages