Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: 2016 23rd International Conference on Pattern Recognition (ICPR), December 2016, pp.3769-3774
    Description: In this paper, we propose a graph affinity learning method for a recently proposed graph-based salient object detection method, namely Extended Quantum Cuts (EQCut). We exploit the fact that the output of EQCut is differentiable with respect to graph affinities, in order to optimize linear combination coefficients and parameters of several differentiable affinity functions by applying error backpropagation. We show that the learnt linear combination of affinities improves the performance over the baseline method and achieves comparable (or even better) performance when compared to the state-of-the-art salient object segmentation methods.
    Keywords: Object Detection ; Object Segmentation ; Symmetric Matrices ; Image Segmentation ; Quantum Mechanics ; Graph Theory ; Computer Vision ; Graph Affinity Learning ; Salient Object Segmentation ; Spectral Graph Theory
    ISSN: 10514651
    Source: IEEE Conference Publications
    Source: IEEE Xplore
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: 2016 23rd International Conference on Pattern Recognition (ICPR), December 2016, pp.3645-3649
    Description: Recently, Approximate Nearest Neighbor (ANN) Search has become a very popular approach for similarity search on large-scale datasets. In this paper, we propose a novel vector quantization method for ANN, which introduces a joint multi-layer K-Means clustering solution for determination of the codebooks. The performance of the proposed method is improved further by a joint encoding scheme. Experimental results verify the success of the proposed algorithm as it outperforms the state-of-the-art methods.
    Keywords: Encoding ; Training ; Hamming Distance ; Optimization ; Vector Quantization ; Search Problems
    ISSN: 10514651
    Source: IEEE Conference Publications
    Source: IEEE Xplore
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: 2016 23rd International Conference on Pattern Recognition (ICPR), December 2016, pp.2276-2281
    Description: Aquatic macroinvertebrate biomonitoring is an efficient way of assessment of slow and subtle anthropogenic changes and their effect on water quality. It is imperative to have reliable identification and counts of the various taxa occurring in samples as these form the basis for the quality indices used to infer the ecological status of the aquatic ecosystem. In this paper, we try to close the gap between human taxa identification accuracy (typically 90-95% on 30-40 classes of macroinvertebrates) and results of automatic fine-grained classification by introducing a novel technique based on Convolutional Neural Networks (CNN). CNN learns optimal features for macroinvertebrate classification and achieves near human accuracy when tested on 29 macroinvertebrate classes. Moreover, we perform comparative evaluation of the learned features against the hand-crafted features, which have been commonly used in classical approaches, and confirm superiority of the learned deep features over the engineered ones.
    Keywords: Feature Extraction ; Ecosystems ; Water Resources ; Machine Vision ; Microscopy ; Databases
    ISSN: 10514651
    Source: IEEE Conference Publications
    Source: IEEE Xplore
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages