Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Aquatic Sciences, 2009, Vol.71(1), pp.46-54
    Description: Terrestrial-derived dissolved organic carbon (DOC) contributes significantly to the energetic basis of many aquatic food webs. Although heterotrophic bacteria are generally considered to be the sole consumers of DOC, algae and cyanobacteria of various taxonomic groups are also capable of exploiting this resource. We tested the hypothesis that algae can utilise DOC in the presence of bacteria if organic resources are supplied in intervals by photolysis of recalcitrant DOC. In short-term uptake experiments, we changed irradiation in the range of minutes. As model substrates, polymers of radiolabelled coumaric acid (PCA) were used, which during photolysis are known to release aromatic compounds comparable to terrestrial-derived and refractory DOC. Three cultured freshwater algae readily assimilated PCA photoproducts equivalent to a biomass-specific uptake of 5–60% of the bacterial competitors present. Algal substrate acquisition did not depend on whether PCA was photolysed continuously or in intervals. However, the data show that photoproducts of terrestrial DOC can be a significant resource for osmotrophic algae. In long-term growth experiments, interval light was applied one hour per day. We allowed cultured Chlamydomonas to compete for ambient DOC of low concentration. We found higher abundances of Chlamydomonas when cultures were irradiated intermittently rather than continuously. These data suggest that photolysis of DOC supports algal heterotrophy, and potentially facilitates growth, when light fluctuations are large, as during the diurnal light cycle. We concluded that osmotrophic algae can efficiently convert terrestrial carbon into the biomass of larger organisms of aquatic food webs.
    Keywords: DOC ; allochthonous ; osmotroph ; photolysis ; plankton ; food web
    ISSN: 1015-1621
    E-ISSN: 1420-9055
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages