Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Biology and Fertility of Soils, 2012, Vol.48(3), pp.305-313
    Description: Soil labile organic carbon (C) oxidation drives the flux of carbon dioxide (CO 2 ) between soils and the atmosphere. However, the impact of grazing management and the contribution soil aggregate size classes (ASCs) to labile organic C from grassland soils is unclear. We evaluated the effects of grazing intensity and soil ASC on the soil labile organic C, including CO 2 production, microbial biomass C, and dissolved organic C and nitrogen (N) mineralization in topsoils (0–10 cm) in Inner Mongolia, Northern China. Soil samples were separated into ASCs of 0–630 μm [fine ASC (fASC)], 630–2000 μm [medium ASC (mASC)] and 〉2000 μm [coarse ASC (cASC)]. The results showed that heavy grazing (HG) and continuous grazing (CG) increased soil labile organic C significantly compared to an ungrazed site since 1999 (UG99) and an ungrazed site since 1979 (UG79). For winter grazing site (WG), no significant differences were found. CO 2 production was highest in cASC, while lowest in fASC. Microbial biomass C and dissolved organic C showed the highest values in mASC and were significantly lower in fASC. Grazing increased N mineralization in bulk soils, while it exhibited complex effects in the three ASCs. The results suggest that the rate of C mineralization was related to the rate of N accumulation. To reduce CO 2 emission and nutrient loss, and to improve soil quality and productivity, a grazing system with moderate intensity is suggested.
    Keywords: Soil organic carbon ; Microbial biomass carbon ; Dissolved organic carbon ; Semiarid grassland ; Inner Mongolia
    ISSN: 0178-2762
    E-ISSN: 1432-0789
    Source: Springer Science & Business Media B.V.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Biology and Fertility of Soils, 4/2012, Vol.48(3), pp.305-313
    Description: Soil labile organic carbon (C) oxidation drives the flux of carbon dioxide (CO sub(2)) between soils and the atmosphere. However, the impact of grazing management and the contribution soil aggregate size classes (ASCs) to labile organic C from grassland soils is unclear. We evaluated the effects of grazing intensity and soil ASC on the soil labile organic C, including CO sub(2) production, microbial biomass C, and dissolved organic C and nitrogen (N) mineralization in topsoils (0-10 cm) in Inner Mongolia, Northern China. Soil samples were separated into ASCs of 0-630 mu m [fine ASC (fASC)], 630-2000 mu m [medium ASC (mASC)] and 〉2000 mu m [coarse ASC (cASC)]. The results showed that heavy grazing (HG) and continuous grazing (CG) increased soil labile organic C significantly compared to an ungrazed site since 1999 (UG99) and an ungrazed site since 1979 (UG79). For winter grazing site (WG), no significant differences were found. CO sub(2) production was highest in cASC, while lowest in fASC. Microbial biomass C and dissolved organic C showed the highest values in mASC and were significantly lower in fASC. Grazing increased N mineralization in bulk soils, while it exhibited complex effects in the three ASCs. The results suggest that the rate of C mineralization was related to the rate of N accumulation. To reduce CO sub(2) emission and nutrient loss, and to improve soil quality and productivity, a grazing system with moderate intensity is suggested.
    Keywords: Soil ; Grasslands ; Carbon ; Grazing ; Oxidation ; Soils (Organic) ; Biomass ; Mineralization ; Carbon Dioxide ; Atmosphere ; Nutrient Loss ; Nitrogen ; Ecosystem and Ecology Studies;
    ISSN: 0178-2762
    E-ISSN: 1432-0789
    Source: Springer (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Biology and Fertility of Soils, 2015, Vol.51(4), pp.427-442
    Description: The interaction between minerals and organic matter (OM) is a key to the turnover of OM in soils. In particular, clay minerals, iron oxides and charcoal are considered as important constituents affecting the sequestration of carbon (C) and nitrogen (N). Here, we incubated pre-produced artificial soils (842 days) and a natural soil (Ap, Luvisol) with 13 C- and 15 N-labelled plant litter over 63 days to follow OM turnover and the formation of organo-mineral associations regarding different compositions (montmorillonite (MT), illite (IL), montmorillonite + charcoal (MT+CH), illite + ferrihydrite (IL+FH)). The microbial biomass, salt extractable organic C, the isotopic C and N composition in the bulk soil and the soil fractions (combined density and particle size fractionation) were determined. By comparison of the artificial soils with the natural soil, we were able to show that the produced soil-like systems have OM dynamics comparable to the natural soil. We found out that the decomposition of the added plant litter was affected by the type of clay mineral that formed the artificial soils, as the soil MT exhibited a slower mineralisation compared to IL, which was in line with a lower microbial biomass. Although a high specific surface area (SSA) provides a high sequestration capacity for C and N, smaller amounts were sequestered in the MT soil with a higher SSA compared to the soil IL. We suppose that a more intensive decomposition is associated with a higher microbial biomass and thus leads to higher amounts of microbial products sequestered in the clay-sized fraction. Charcoal and ferrihydrite had no additional effect in this experiment.
    Keywords: Clay minerals ; Turnover ; Organo-mineral associations ; Incubation ; Stable isotopes ; Artificial soils
    ISSN: 0178-2762
    E-ISSN: 1432-0789
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Biology and Fertility of Soils, 2009, Vol.45(4), pp.347-359
    Description: Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon (C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G). For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed SOM fractions by 13 C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites were low (F-F = 8.3 kg m −2 ; C-F = 7.3 kg m −2 ; F-G = 8.2 kg m −2 ). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland. High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable in the subsoils by the composition and 14 C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland.
    Keywords: C-CPMAS NMR ; Radiocarbon ; Density fractionation ; Particulate organic matter ; Black carbon
    ISSN: 0178-2762
    E-ISSN: 1432-0789
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Biology and Fertility of Soils, 2009, Vol.46(1), pp.1-15
    Description: Soil organic matter (SOM) represents one of the largest reservoirs of carbon on the global scale. Thus, the temperature sensitivity of bulk SOM and of different SOM fractions is a key factor determining the response of the terrestrial carbon balance to climatic warming. We condense the available knowledge about the potential temperature sensitivity and the actual temperature sensitivity of decomposition in situ, which ultimately depends on substrate availability. We review and evaluate contradictory results of estimates of the temperature sensitivity of bulk SOM and of different SOM fractions. The contradictory results demonstrate a need to focus research on biological and physicochemical controls of SOM stabilisation and destabilisation processes as a basis for understanding strictly causal relationships and kinetic properties of key processes that determine pool sizes and turnover rates of functional SOM pools. The current understanding is that temperature sensitivity of SOM mineralisation is governed by the following factors: (1) the stability of SOM, (2) the substrate availability, which is determined by the balance between input of organic matter, stabilisation and mineralisation of SOM, (3) the physiology of the soil microflora, its efficiency in substrate utilisation and its temperature optima and (4) physicochemical controls of destabilisation and stabilisation processes, like pH and limitation of water, oxygen and nutrient supply. As soil microflora is functionally omnipotent and most SOM is of high age and stability, the temperature dependence of stable SOM pools is the central question that determines C stocks and stock changes under global warming.
    Keywords: SOM destabilisation ; Q10 ; Arrhenius equation ; Michaelis–Menten kinetics ; CO flux ; Temperature sensitivity
    ISSN: 0178-2762
    E-ISSN: 1432-0789
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Biology and Fertility of Soils, 2017, Vol.53(1), pp.9-22
    Description: Our understanding of the interactions between minerals, organic matter, and microorganisms at so-called biogeochemical interfaces in soil is still hampered by the inherent complexity of these systems. Artificial soil maturation experiments can help to bridge a gap in complexity between simple abiotic sorption experiments and larger-scale field experiments. By controlling other soil-forming factors, the effect of a particular variable can be identified in a simplified system. Here, we review the findings of a series of artificial soil incubation experiments with the aim of revealing general trends and conclusions. The artificial soils were designed to determine the effect of mineral composition and charcoal presence on the development of abiotic and biotic soil properties during maturation. In particular, the development of soil aggregates, organic matter (OM) composition and turnover, sorption properties, and the establishment of microbial community composition and function were considered. The main objectives of the research were to determine (1) how surface properties and sorption of chemicals modify biogeochemical interfaces; (2) how much time is required to form aggregates from mixtures of pure minerals, OM, and a microbial inoculum; and (3) how the presence of different mineral and charcoal surfaces affects aggregation, OM turnover, and the development of microbial community composition.
    Keywords: Experimental pedology ; Soil organic matter ; Soil microbial ecology ; Secondary phyllosilicates ; Biogeochemical interfaces ; Interdisciplinary soil science
    ISSN: 0178-2762
    E-ISSN: 1432-0789
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Biology and Fertility of Soils, 2005, Vol.42(2), pp.153-158
    Description: This study was conducted to investigate the influence of land-use systems (grassland and cropland) and of long-term no-till cropping systems [bare soil, oat/maize (O/M), pigeon pea+maize (P+M)] on the composition of organic N forms in a subtropical Acrisol. Soil samples collected from the 0- to 2.5-cm layer in the study area (Eldorado do Sul RS, Brazil) were submitted to acid hydrolysis and cross-polarization magic angle spinning (CPMAS) 15 N and 13 C nuclear magnetic resonance (NMR) spectroscopies. The legume-based cropping system P+M contained the highest contents of non-hydrolysable C and N, hydrolysable C and N, amino acid N and hydrolysed unknown N. The relative proportion of non-hydrolysable N was higher in bare soil (30.0%) and decreased incrementally in other treatments based on the total C and N contents. The amino acid N corresponded to an average of 37.2% of total N, and was not affected by land use and no-till cropping systems. The non-hydrolysable residue contained lower O-alkyl and higher aromatic C concentrations, as revealed by CPMAS 13 C NMR spectroscopy, and higher C:N ratio than the bulk soil. No differences in the bulk soil organic matter composition could be detected among treatments, according to CPMAS 13 C and 15 N NMR spectra. In the non-hydrolysable fraction, grassland showed a lower concentration of aromatic and a higher concentration of alkyl C than other treatments. From CPMAS 15 N NMR spectra, it could be concluded that amide N from peptide structures are the main organic N constituent. Amide structures are possibly protected through encapsulation into hydrophobic sites of organic matter and through organomineral interaction.
    Keywords: No tillage ; Organic N ; Acid hydrolysis ; Amino acids ; Solid-state N NMR spectroscopy
    ISSN: 0178-2762
    E-ISSN: 1432-0789
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages