Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Cellular Physiology and Biochemistry, January 2006, Vol.18(1-3), pp.57-66
    Description: The KCNQ gene family comprises voltage-gated potassium channels expressed in epithelial tissues (KCNQ1, KCNQ5), inner ear structures (KCNQ1, KCNQ4) and the brain (KCNQ2-5). KCNQ4 is expressed in inner and outer hair cells of the inner ear where it influences electrical excitability and cell survival. Accordingly, loss of function mutations of the KCNQ4 gene cause hearing loss in humans and functional k.o.-mice show progressive degeneration of outer hair cells (OHCs). However, characteristic electrophysiological features of the native KCNQ4- carried current IK,n in OHCs are not recapitulated by expression of KCNQ4 channels in heterologous expression systems. This might suggest modulation of KCNQ4 by interacting KCNE ß-subunits, which are known to modify the properties of the closely related KCNQ1. The present study explored whether transcripts of the KCNE isoforms could be identified in OHC mRNA and whether the subunits modulate KCNQ4 function. RT-PCR indeed yielded transcripts of all five KCNEs in OHCs. Coexpression of the KCNE- ß-subunits with human KCNQ4 in the Xenopus laevis oocyte expression system revealed that all KCNEs modulate KCNQ4 voltage dependence, protein stability and ion selectivity of hKCNQ4 in Xenopus oocytes. The deafness-associated Jervell and Lange- Nielsen syndrome (JLNS) mutation KCNE1(D76N) impairs KCNQ4-function whereas the Romano-Ward syndrome (RWS) mutant KCNE1(S74L), which shows normal hearing in patients, does not impair KCNQ4 channel function. In conclusion, KCNEs are presumably coexpressed with KCNQ4 in hair cells from the organ of Corti and might regulate KCNQ4 functional properties, effects that could be important under physiological and pathophysiological conditions.
    Keywords: Original Paper ; Biology ; Chemistry
    ISSN: 1015-8987
    E-ISSN: 1421-9778
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Cellular Physiology and Biochemistry, November 2005, Vol.16(4-6), pp.255-262
    Description: The KCNQ gene family comprises voltage-gated potassium channels expressed in epithelial tissues (KCNQ1, KCNQ5), inner ear structures (KCNQ1, KCNQ4) and the brain (KCNQ2-5). KCNQ4 is expressed in inner and outer hair cells of the inner ear where it determines electrical excitability. Accordingly, loss of function mutations of the KCNQ4 gene cause hearing loss. Several K+ channels including the closely related KCNQ1/KCNE1 channel are regulated by the serum- and glucocorticoid-inducible kinase (SGK) family. The present study utilized the Xenopus oocyte system to explore effects of SGK isoforms on KCNQ4 mediated K+-currents: KCNQ4 channels activated in a voltage dependent manner with half maximal activation at -10 mV. The peak channel activity was significantly increased by prepulsing. Coexpression of wild type SGK1 but not coexpression of the inactive mutant K127NSGK1 significantly increased current amplitudes (by 67 %) and significantly increased the resting potential of KCNQ4 expressing oocytes. Here we describe for the first time a prepulse dependence of KCNQ4 channels with increased currents after hyperpolarizing prepulses. Coexpression of SGK1 significantly attenuated the effect of prepulsing on peak currents. Mutation of Ser to Asp or Ala in the putative phosphorylation consensus sequence in KCNQ4 significantly decreased the sensitivity to SGK1-coexpression. In conclusion, SGK1 regulates current amplitudes and kinetic properties of KCNQ4 channel activity, an effect sensitive to mutations in the SGK1 consensus sequence of the channel.
    Keywords: Original Paper ; Biology ; Chemistry
    ISSN: 1015-8987
    E-ISSN: 1421-9778
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages