Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Environmental Pollution, 2012, Vol.167, pp.41-46
    Description: Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption...
    Keywords: Other Biological Topics ; Annan Biologi
    ISSN: 0269-7491
    E-ISSN: 18736424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Environmental Pollution, March, 2014, Vol.186, p.136(5)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.envpol.2013.11.028 Byline: Gabriela KalAikova, Dominic Englert, Ricki R. Rosenfeldt, Frank Seitz, Ralf Schulz, Mirco Bundschuh Abstract: Although nanoparticle production and application increases continuously, their implications in species interactions, especially in combination with other environmental stressors, are rarely assessed. Therefore, the present study investigated the influence of 2 mg/L titanium dioxide nanoparticles (nTiO.sub.2; 〈100 nm) on the interaction between the prey Ephemerella ignita (Ephemeroptera) and the predator Gammarus fossarum (Amphipoda) over 96 h considering UV-irradiation at field relevant levels (approximately 11.4 W/m.sup.2) as an additional environmental factor (n = 16). At the same time, gammarid's consumption of an alternative food source, i.e. leaf discs, was assessed. All endpoints covered were not affected by nTiO.sub.2 alone, while the combination of nTiO.sub.2 and UV caused a reduction in gammarid's predation (68%), leaf consumption (60%) and body weight (22%). These effects were most likely triggered by the UV-induced formation of reactive oxygen species by nTiO.sub.2. The present study, hence, highlights the importance to cover UV-irradiation during the risk assessment of nanoparticles. Author Affiliation: (a) Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau, Germany (b) Faculty of Chemistry and Chemical Technology, University of Ljubljana, AA kerAeva 5, SI-1000 Ljubljana, Slovenia (c) Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms vag 9, 750 07 Uppsala, Sweden Article History: Received 24 September 2013; Revised 6 November 2013; Accepted 18 November 2013
    Keywords: Nanoparticles ; Titanium Dioxide
    ISSN: 0269-7491
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Environmental Pollution, January 2011, Vol.159(1), pp.244-249
    Description: Climate change scenarios predict lower flow rates during summer that may lead to higher proportions of wastewater in small and medium sized streams. Moreover, micropollutants (e.g. pharmaceuticals and other contaminants) continuously enter aquatic environments via treated wastewater. However, there is a paucity of knowledge, whether extended exposure to secondary treated wastewater disrupts important ecosystem functions, e.g. leaf breakdown. Therefore, the amphipod shredder was exposed to natural stream water (  = 34) and secondary treated wastewater (  = 32) for four weeks in a semi-static test system under laboratory conditions. exposed to wastewater showed significant reductions in feeding rate (25%), absolute consumption (35%), food assimilation (50%), dry weight (18%) and lipid content (22%). Thus, high proportions of wastewater in the stream flow may affect both the breakdown rates of leaf material and thus the availability of energy for the aquatic food web as well as the energy budget of . Micropollutants in wastewater cause functional and physiological alteration in a leaf-shredding amphipod.
    Keywords: Advanced Treatment Technology ; Ecological Functioning ; Gammarus Fossarum ; Leaf Litter Breakdown ; Wastewater ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental Pollution, July 2016, Vol.214, pp.840-846
    Description: Although nanoparticles are increasingly investigated, their impact on the availability of food (i.e., algae) at the bottom of food chains remains unclear. It is, however, assumed that algae, which form heteroagglomerates with nanoparticles, sediment quickly limiting the availability of food for primary consumers such as As a consequence, it may be hypothesized that this scenario – in case of fundamental importance for the nanoparticles impact on primary consumers – induces a similar pattern in the life history strategy of daphnids relative to situations of food depletion. To test this hypothesis, the present study compared the life-history strategy of experiencing different degrees of food limitation as a consequence of variable algal density with daphnids fed with heteroagglomerates composed of algae and titanium dioxide nanoparticles (nTiO ). In contrast to the hypothesis, daphnids’ body length, weight, and reproduction increased when fed with these heteroagglomerates, while the opposite pattern was observed under food limitation scenarios. Moreover, juvenile body mass, and partly length, was affected negatively irrespective of the scenarios. This suggests that daphnids experienced – besides a limitation in the food availability – additional stress when fed with heteroagglomerates composed of algae and nTiO Potential explanations include modifications in the nutritious quality of algae but also an early exposure of juveniles to nTiO . Impact of nTiO -algae heteroagglomerates in 's life history strategy cannot exclusively be explained by food depletion.
    Keywords: Energy Budget ; Heteroagglomerates ; Trophic Interaction ; Physiology ; Food Quality ; Nanomaterials ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Environmental Pollution, May 2018, Vol.236, pp.119-125
    Description: Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder was fed (over 7 d;  = 30) with imidacloprid-contaminated black alder ( ) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams. UV-irradiation and leaching in water reduce imidacloprid residues in contaminated leaves consequently mitigating toxicity for a leaf-shredding amphipod.
    Keywords: Neonicotinoids ; Imidacloprid ; Gammarus ; Leaf Fall ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental Pollution, January 2015, Vol.196, pp.276-283
    Description: Interactions with environmental parameters may alter the ecotoxicity of nanoparticles. The present study therefore assessed the (in)direct effects of nanoparticulate titanium dioxide (nano-TiO ) towards , considering nano-TiO 's photocatalytic properties at ambient UV-intensities. Gammarids' habitat selection was investigated using its feeding preference on leaf discs either exposed to or protected from UV-irradiation in presence of nano-TiO as proxy (  = 49). UV-irradiation alone induced a significant preference for UV-protected habitats, which was more pronounced in simultaneous presence of nano-TiO . This behaviour may be mainly explained by the UV-induced formation of reactive oxygen species (ROS) by nano-TiO . Besides their direct toxicity, ROS may have lowered the leaf-quality in UV-exposed areas contributing (approximately 30%) to the observed behavioural pattern. Since the predicted no effect concentration of nano-TiO in combination with UV-irradiation falls below the predicted environmental concentration this study underpins the importance of considering environmental parameters during the risk assessment of nanoparticles. Results revealed for the first time a PNEC of nano-TiO falling below the PEC indicating a substantial risk for aquatic ecosystems already nowadays.
    Keywords: Gammarus ; Uv-Irradiation ; Interaction Effect ; Reactive Oxygen Species ; Behavioural Response ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Environmental Pollution, Jan, 2015, Vol.196, p.276(8)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.envpol.2014.09.022 Byline: Alexander Feckler, Ricki R. Rosenfeldt, Frank Seitz, Ralf Schulz, Mirco Bundschuh Abstract: Interactions with environmental parameters may alter the ecotoxicity of nanoparticles. The present study therefore assessed the (in)direct effects of nanoparticulate titanium dioxide (nano-TiO.sub.2) towards Gammarus fossarum, considering nano-TiO.sub.2's photocatalytic properties at ambient UV-intensities. Gammarids' habitat selection was investigated using its feeding preference on leaf discs either exposed to or protected from UV-irradiation in presence of nano-TiO.sub.2 as proxy (n = 49). UV-irradiation alone induced a significant preference for UV-protected habitats, which was more pronounced in simultaneous presence of nano-TiO.sub.2. This behaviour may be mainly explained by the UV-induced formation of reactive oxygen species (ROS) by nano-TiO.sub.2. Besides their direct toxicity, ROS may have lowered the leaf-quality in UV-exposed areas contributing (approximately 30%) to the observed behavioural pattern. Since the predicted no effect concentration of nano-TiO.sub.2 in combination with UV-irradiation falls below the predicted environmental concentration this study underpins the importance of considering environmental parameters during the risk assessment of nanoparticles. Author Affiliation: (a) Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany (b) Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms vag 9, 75007 Uppsala, Sweden Article History: Received 26 June 2014; Revised 16 September 2014; Accepted 22 September 2014
    Keywords: Nanoparticles -- Analysis ; Habitat Conservation -- Analysis ; Titanium Dioxide -- Analysis
    ISSN: 0269-7491
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental Pollution, 2010, Vol.158(2), pp.615-623
    Description: This study evaluates the effects of the triazine herbicide simazine in an outdoor pond microcosm test system that contained two submerged rooted species ( and ) and two emergent rooted species ( and ) over a period of 84 days. Simazine was applied to the microcosms at nominal concentrations of 0.05, 0.5 and 5 mg/L. General biological endpoints and physiological endpoints were used to evaluate herbicide toxicity on macrophytes and the algae developing naturally in the system. Concentration-related responses of macrophytes and algae were obtained for the endpoints selected, resulting in a no observed ecologically adverse effect concentration (NOEAEC) at simazine concentrations of 0.05 mg active ingredient/L after 84 days. was the most negatively affected species based on length increase, which was consistently a very sensitive parameter for all macrophytes. The experimental design presented might constitute a suitable alternative to conventional laboratory single-species testing. Simazine at concentrations of 0.05 mg/L does not cause long-term negative effects to aquatic macrophytes or algae.
    Keywords: Macrophytes ; Single-Species ; Microcosms ; Herbicide ; Simazine ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Environmental Pollution, March 2017, Vol.222, pp.458-464
    Description: Leaf-shredding amphipods play a critical role in the ecosystem function of leaf litter breakdown, a key process in many low order streams. Fungicides, however, may adversely influence shredders' behavior and the functions they provide, while there is only limited knowledge concerning effects on their reproductive performance. To assess the latter, a semi-static 56-day partial life-cycle bioassay using the model shredder (  = 30) was performed applying two environmentally relevant concentrations of a model fungicide mixture (i.e., 5 and 25 μg/L) composed of five fungicides with different modes of toxic action. Variables related to the food processing (leaf consumption and feces production), growth (body length and dry weight), energy reserves (lipid content), and reproduction (amplexus pairs, number and length of offspring) were determined to understand potential implications in the organisms' energy budget. While the fungicides did not affect leaf consumption, both fungicide treatments significantly reduced amphipods' feces production (∼20%) compared to the control. This observation suggests an increased food utilization to counteract the elevated and stress-related energy demand: although growth as well as energy reserves were unaffected, amplexus pairs were less frequently observed in both fungicide treatments (∼50–100%) suggesting a tradeoff regarding energy allocation favoring the maintenance of fundamental functions at the organism level over reproduction. As a result, the time to release of first offspring was delayed in both fungicide treatments (7 and 14 days) and the median number of offspring was significantly lower in the 25-μg/L treatment (100%), whereas offspring length remained unaffected. The results of this study thus indicate that chronic fungicide exposures can negatively impact shredders' reproductive performance. This may translate into lower abundances and thus a reduced contribution to leaf litter breakdown in fungicide-impacted streams with potentially far-reaching consequences for detritus-based food webs. Chronic exposure to environmentally relevant fungicide concentrations can negatively impact leaf-shredders' reproductive performance.
    Keywords: Shredder ; Fungicide ; Mixture ; Energy Allocation ; Reproduction ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Environmental Pollution, March 2014, Vol.186, pp.136-140
    Description: Although nanoparticle production and application increases continuously, their implications in species interactions, especially in combination with other environmental stressors, are rarely assessed. Therefore, the present study investigated the influence of 2 mg/L titanium dioxide nanoparticles (nTiO ; 〈100 nm) on the interaction between the prey (Ephemeroptera) and the predator (Amphipoda) over 96 h considering UV-irradiation at field relevant levels (approximately 11.4 W/m ) as an additional environmental factor (  = 16). At the same time, gammarid's consumption of an alternative food source, i.e. leaf discs, was assessed. All endpoints covered were not affected by nTiO alone, while the combination of nTiO and UV caused a reduction in gammarid's predation (68%), leaf consumption (60%) and body weight (22%). These effects were most likely triggered by the UV-induced formation of reactive oxygen species by nTiO . The present study, hence, highlights the importance to cover UV-irradiation during the risk assessment of nanoparticles. UV-irradiation influences nanoparticles' ecotoxicity rising concerns about adverse effects in trophic interactions and ecosystem functions.
    Keywords: Gammarid ; Mayfly ; Energy Transfer ; Ecosystem Functioning ; Sunlight ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages