Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Forest Ecology and Management, 15 November 2015, Vol.356, pp.136-143
    Description: Phosphorus is an essential yet scarce macronutrient, and as such forest nutrition often relies on cycling of P between biomass and soils through litterfall and roots. For technical and soil protection reasons, modern harvesting systems create thick brash mats on skid trails by depositing residues, thus concentrating P there. What portion of this redistributed P is immobilized, lost, or recycled could be significant to forest nutrition and management. However, open questions exist regarding the quantity and fate of P deposited on skid trials. The aim of this study was to determine how much P is redistributed to skid trails and what happens to that P. We modeled the amount of P deposited on a skid trail during a whole-tree thinning of an Mill. stand, and quantified P stocks in the forest floor and mineral soil five years after the operation. An estimated 60% of harvested P from the encatchment was deposited on the skid trail. Five years after the harvest, forest floor P stocks in the skid trail dropped from an extrapolated 8.9 to 4.4 g m . The difference of 4.5 g m of P was not evident in mineral soil stocks, and loss through runoff or leaching would be minimal. With the greatest concentration of roots in the forest floor on the middle of the skid trail, mineralization and uptake of the missing P was the most likely explanation. This suggests that accumulated P on skid trails can be recycled through uptake by trees. Further testing in other stands and on which vegetation takes up accumulated P is still needed.
    Keywords: Nutrient Cycling ; Plant Uptake ; Whole-Tree Harvesting ; Brash Mats ; Allometric Modeling ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Forest Ecology and Management, 01 December 2017, Vol.405, pp.200-209
    Description: Deadwood plays a crucial role in forest ecosystems, yet its impact on soil properties and specifically soil organic matter (SOM) stabilization is hitherto not fully understood or studied. We hypothesized that downed deadwood would enhance the light, labile SOM fraction in forest topsoils, and that those changes would be enhanced by advanced decay and higher rates of soil bioturbation that would move deadwood fragments into mineral soil. To test our hypotheses, we took topsoil samples directly next to European beech ( L.) downed deadwood and samples from paired reference points at eight stands in Southwest Germany. From those samples we separated SOM into three density fractions linked to physical and chemical SOM stabilization processes: the free light fraction, the aggregate-occluded light fraction and the mineral-adsorbed heavy fraction. On silicate bedrock, deadwood increased the free light fraction by 57% ( mg g ) compared to reference points. In contrast on calcareous bedrock, deadwood decreased the free light fraction by 23% ( mg g ) compared to reference points. Deadwood with advanced decay from all sites increased the aggregate-occluded light fraction by 40% ( mg g ) as well as total soil organic carbon (SOC) stocks by 24% ( mg cm ) as compared to reference points. In summary, the light fraction of SOM was affected by deadwood depending on site conditions and the more stable, aggregate-occluded fraction eventually increased near decayed deadwood through interactions between stimulated biological activity and both particulate and dissolved organic matter. Altogether these results indicate that deadwood increases SOC stocks at sites where SOM decomposition is slow enough to enable occlusion of particulate organic matter within aggregates.
    Keywords: Coarse Woody Debris ; Forest Management ; Som Stability ; Soil Aggregate ; Density Fractionation ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages