Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Geoderma, 01 July 2017, Vol.297, pp.61-69
    Description: The use of heavy machinery for timber harvesting causes soil damage, which may restrict forest soil functions over decades. Numerous studies have demonstrated the negative impact of soil compaction on soil physical properties, but the effects of compaction of forest soils on soil chemical and biological processes like the phosphorus availability are largely unknown. Aim of our study was to analyze the effect of skidding activity on the P dynamics on skid trails and the soil recovery ability after skidding. Furthermore, we wanted to assess if acid phosphatase activity is an appropriate indicator of soil structure damage after compaction. We investigated the phosphorus availability, acid phosphatase activity, TOC, pH value, and fine root density of soil samples from skid trails and from control plots without any skidding effect. We conducted our studies at three sites (Göttingen: Cambisols on limestone, Heide: Podzol on glacial drift and sand, and Solling: Cambisols at loess-covered sandstone) in Lower Saxony, Germany 10 to 40 years after last traffic impact in a space-for-time substitution. We observed mainly higher P concentrations and higher pH values at the wheel tracks than in the control. TOC was predominantly higher at the wheel tracks, but lower TOC at the wheel tracks was also found. In the acidic loams of the Solling region, the amount of mineralized phosphate was much higher in the tracks compared to the control areas 10 to 30 years after last traffic impact. This suggests a decoupling of P mineralization from P uptake in the wheel tracks for several decades. Furthermore, higher as well as lower phosphatase activity at the wheel tracks compared to the untrafficked control was found, but higher phosphatase activities at the wheel tracks were predominant. Acid phosphatase activity was strongly correlated with TOC, but did not correlate with the time since last traffic impact and the gas diffusivity of the soil. Therefore, our results did not confirm that acid phosphatase activity is an appropriate soil biological indicator of soil compaction and structural recovery.
    Keywords: Acid Phosphatase Activity ; P Availability ; Soil Compaction ; Soil Structure Recovery ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Geoderma, 15 February 2017, Vol.288, pp.204-212
    Description: Deadwood is a key factor in forest ecosystems, yet how it influences forest soil properties is uncertain. We hypothesized that changes in soil properties induced by deadwood mainly depend on the amount of released phenolic matter. Consequently we expected softwood- and hardwood-related deadwood effects on soil to be explained by unequal enrichment of phenolic substances. We measured differences in the quantity and composition of soil organic matter (SOM), pH, nutrient concentrations, and enzymatic activity between paired control and treatment points influenced by deadwood of silver fir ( Mill.) and European beech ( L.), and checked for correlations with total C and phenolic matter; the latter was quantified as aromaticity of water-extractable organic C through specific UV absorbance at 280 nm. Near fir deadwood, aromaticity and effective cation exchange capacity (CEC) increased while pH decreased. In comparison, concentrations of water-extractable organic C, effective CEC, exchangeable Ca and Mg , base saturation, and available molybdenum-reactive P increased near beech deadwood while exchangeable Al decreased. For fir deadwood, soil properties strongly correlated almost exclusively with total C. For beech deadwood, numerous strong correlations with aromaticity indicated that extractable phenolics influenced soil properties. These differences in correlations imply that deadwood affects soil through the composition of added phenolic matter, which would stem from differing decay processes and organisms. Decayed, particulate lignin from brown-rot in fir deadwood as opposed to oxidized, dissolved lignin from white-rot in beech deadwood would account for our observations.
    Keywords: Coarse Woody Debris ; Soil Chemistry ; Lignin ; Brown-Rot Fungi ; White-Rot Fungi ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Geoderma, 2004, Vol.123(1), pp.153-162
    Description: Use of soil archives provides the opportunity to retrospectively analyze changes in soil properties. We used the distribution of heavy metals between the exterior and interior of aggregates in recent and archived samples to derive (1) temporal trends in metal concentrations and distribution across aggregates and (2) to assess aggregate turnover times. We collected 11 topsoils under grassland and forest along a transect from Moscow to a distance of 50 km from the city centre and at a background location. Furthermore, we analyzed six topsoils sampled between 1910 and 1954 at some of the locations. We fractionated aggregates 〉1 cm into interior and exterior portions. Except at one contaminated site, heavy metal concentrations were low (Cd: 0.09-0.33 mg kg (super -1) , Cu: 6.8-24 mg kg (super -1) , Pb: 6.7-31 mg kg (super -1) , Zn: 25-54 mg kg (super -1) ), comparable with background levels in central Europe. They were not related to the distance to Moscow indicating that Moscow was no point source for the studied soils. During the last century, contents of heavy metals in soils increased inside and decreased outside the city. In Moscow, the heavy metal accumulation in the aggregate exterior relative to the interior was more pronounced in recent than in archived samples reflecting a higher recent than historic deposition. However, there was also an increase in heavy metal concentrations in the interior of recent compared with archived aggregates. Thus, the studied aggregates were turned over at least once during the last 50-90 years at all sites. This limited the build-up of metal concentration gradients in aggregates.
    Keywords: Archived Soil Samples ; Heavy Metals ; Soil Aggregates ; Small-Scale Heterogeneity ; Aggregate Stability ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages